File: factor2string.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (115 lines) | stat: -rw-r--r-- 2,906 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#' Convert Factors to Strings
#'
#' `step_factor2string` will convert one or more factor vectors to strings.
#'
#' @inheritParams step_center
#' @param columns A character string of variables that will be converted. This
#'   is `NULL` until computed by [prep()].
#' @template step-return
#' @family dummy variable and encoding steps
#' @export
#' @details `prep` has an option `strings_as_factors` that defaults to `TRUE`.
#'   If this step is used with the default option, the string(s() produced by
#'   this step will be converted to factors after all of the steps have been
#'   prepped.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns `terms`
#' (the columns that will be affected) is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(Sacramento, package = "modeldata")
#'
#' rec <- recipe(~ city + zip, data = Sacramento)
#'
#' make_string <- rec %>%
#'   step_factor2string(city)
#'
#' make_string <- prep(make_string,
#'   training = Sacramento,
#'   strings_as_factors = FALSE
#' )
#'
#' make_string
#'
#' # note that `city` is a string in recipe output
#' bake(make_string, new_data = NULL) %>% head()
#'
#' # ...but remains a factor in the original data
#' Sacramento %>% head()
step_factor2string <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           columns = FALSE,
           skip = FALSE,
           id = rand_id("factor2string")) {
    add_step(
      recipe,
      step_factor2string_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        columns = columns,
        skip = skip,
        id = id
      )
    )
  }

step_factor2string_new <-
  function(terms, role, trained, columns, skip, id) {
    step(
      subclass = "factor2string",
      terms = terms,
      role = role,
      trained = trained,
      columns = columns,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_factor2string <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("factor", "ordered"))

  step_factor2string_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    columns = col_names,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_factor2string <- function(object, new_data, ...) {
  check_new_data(names(object$columns), object, new_data)

  new_data[, object$columns] <- map(new_data[, object$columns], as.character)

  new_data
}

print.step_factor2string <-
  function(x, width = max(20, options()$width - 30), ...) {
    title <- "Character variables from "
    print_step(x$columns, x$terms, x$trained, title, width)
    invisible(x)
  }


#' @rdname tidy.recipe
#' @export
tidy.step_factor2string <- function(x, ...) {
  res <- simple_terms(x, ...)
  res$id <- x$id
  res
}