1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
#' Filter rows using dplyr
#'
#' `step_filter` creates a *specification* of a recipe step
#' that will remove rows using [dplyr::filter()].
#'
#' @template row-ops
#' @inheritParams step_center
#' @param ... Logical predicates defined in terms of the variables
#' in the data. Multiple conditions are combined with `&`. Only
#' rows where the condition evaluates to `TRUE` are kept. See
#' [dplyr::filter()] for more details.
#' @param inputs Quosure of values given by `...`.
#' @template step-return
#' @details When an object in the user's global environment is
#' referenced in the expression defining the new variable(s),
#' it is a good idea to use quasiquotation (e.g. `!!`) to embed
#' the value of the object in the expression (to be portable
#' between sessions). See the examples.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` which contains the conditional statements is returned.
#' These expressions are text representations and are not parsable.
#'
#' @template case-weights-not-supported
#'
#' @family row operation steps
#' @family dplyr steps
#' @export
#' @examples
#' rec <- recipe(~., data = iris) %>%
#' step_filter(Sepal.Length > 4.5, Species == "setosa")
#'
#' prepped <- prep(rec, training = iris %>% slice(1:75))
#'
#' library(dplyr)
#'
#' dplyr_train <-
#' iris %>%
#' as_tibble() %>%
#' slice(1:75) %>%
#' dplyr::filter(Sepal.Length > 4.5, Species == "setosa")
#'
#' rec_train <- bake(prepped, new_data = NULL)
#' all.equal(dplyr_train, rec_train)
#'
#' dplyr_test <-
#' iris %>%
#' as_tibble() %>%
#' slice(76:150) %>%
#' dplyr::filter(Sepal.Length > 4.5, Species != "setosa")
#' rec_test <- bake(prepped, iris %>% slice(76:150))
#' all.equal(dplyr_test, rec_test)
#'
#' values <- c("versicolor", "virginica")
#'
#' qq_rec <-
#' recipe(~., data = iris) %>%
#' # Embed the `values` object in the call using !!
#' step_filter(Sepal.Length > 4.5, Species %in% !!values)
#'
#' tidy(qq_rec, number = 1)
step_filter <- function(recipe, ...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = TRUE,
id = rand_id("filter")) {
inputs <- enquos(...)
add_step(
recipe,
step_filter_new(
terms = terms,
trained = trained,
role = role,
inputs = inputs,
skip = skip,
id = id
)
)
}
step_filter_new <-
function(terms, role, trained, inputs, skip, id) {
step(
subclass = "filter",
terms = terms,
role = role,
trained = trained,
inputs = inputs,
skip = skip,
id = id
)
}
#' @export
prep.step_filter <- function(x, training, info = NULL, ...) {
step_filter_new(
terms = x$terms,
trained = TRUE,
role = x$role,
inputs = x$inputs,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_filter <- function(object, new_data, ...) {
dplyr::filter(new_data, !!!object$inputs)
}
print.step_filter <-
function(x, width = max(20, options()$width - 35), ...) {
title <- "Row filtering using "
print_step(x$inputs, x$inputs, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_filter <- function(x, ...) {
cond_expr <- map(unname(x$inputs), quo_get_expr)
cond_expr <- map_chr(cond_expr, quo_text, width = options()$width, nlines = 1)
tibble(
terms = cond_expr,
id = rep(x$id, length(x$inputs))
)
}
|