File: filter.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (132 lines) | stat: -rw-r--r-- 3,509 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#' Filter rows using dplyr
#'
#' `step_filter` creates a *specification* of a recipe step
#'  that will remove rows using [dplyr::filter()].
#'
#' @template row-ops
#' @inheritParams step_center
#' @param ... Logical predicates defined in terms of the variables
#'  in the data. Multiple conditions are combined with `&`. Only
#'  rows where the condition evaluates to `TRUE` are kept. See
#'  [dplyr::filter()] for more details.
#' @param inputs Quosure of values given by `...`.
#' @template step-return
#' @details When an object in the user's global environment is
#'  referenced in the expression defining the new variable(s),
#'  it is a good idea to use quasiquotation (e.g. `!!`) to embed
#'  the value of the object in the expression (to be portable
#'  between sessions). See the examples.
#'
#'  # Tidying
#'
#'  When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#'  `terms` which contains the conditional statements is returned.
#'  These expressions are text representations and are not parsable.
#'
#' @template case-weights-not-supported
#'
#' @family row operation steps
#' @family dplyr steps
#' @export
#' @examples
#' rec <- recipe(~., data = iris) %>%
#'   step_filter(Sepal.Length > 4.5, Species == "setosa")
#'
#' prepped <- prep(rec, training = iris %>% slice(1:75))
#'
#' library(dplyr)
#'
#' dplyr_train <-
#'   iris %>%
#'   as_tibble() %>%
#'   slice(1:75) %>%
#'   dplyr::filter(Sepal.Length > 4.5, Species == "setosa")
#'
#' rec_train <- bake(prepped, new_data = NULL)
#' all.equal(dplyr_train, rec_train)
#'
#' dplyr_test <-
#'   iris %>%
#'   as_tibble() %>%
#'   slice(76:150) %>%
#'   dplyr::filter(Sepal.Length > 4.5, Species != "setosa")
#' rec_test <- bake(prepped, iris %>% slice(76:150))
#' all.equal(dplyr_test, rec_test)
#'
#' values <- c("versicolor", "virginica")
#'
#' qq_rec <-
#'   recipe(~., data = iris) %>%
#'   # Embed the `values` object in the call using !!
#'   step_filter(Sepal.Length > 4.5, Species %in% !!values)
#'
#' tidy(qq_rec, number = 1)
step_filter <- function(recipe, ...,
                        role = NA,
                        trained = FALSE,
                        inputs = NULL,
                        skip = TRUE,
                        id = rand_id("filter")) {
  inputs <- enquos(...)

  add_step(
    recipe,
    step_filter_new(
      terms = terms,
      trained = trained,
      role = role,
      inputs = inputs,
      skip = skip,
      id = id
    )
  )
}

step_filter_new <-
  function(terms, role, trained, inputs, skip, id) {
    step(
      subclass = "filter",
      terms = terms,
      role = role,
      trained = trained,
      inputs = inputs,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_filter <- function(x, training, info = NULL, ...) {
  step_filter_new(
    terms = x$terms,
    trained = TRUE,
    role = x$role,
    inputs = x$inputs,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_filter <- function(object, new_data, ...) {
  dplyr::filter(new_data, !!!object$inputs)
}


print.step_filter <-
  function(x, width = max(20, options()$width - 35), ...) {
    title <- "Row filtering using "
    print_step(x$inputs, x$inputs, x$trained, title, width)
    invisible(x)
  }

#' @rdname tidy.recipe
#' @export
tidy.step_filter <- function(x, ...) {
  cond_expr <- map(unname(x$inputs), quo_get_expr)
  cond_expr <- map_chr(cond_expr, quo_text, width = options()$width, nlines = 1)
  tibble(
    terms = cond_expr,
    id = rep(x$id, length(x$inputs))
  )
}