File: geodist.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (288 lines) | stat: -rw-r--r-- 8,047 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#' Distance between two locations
#'
#' `step_geodist` creates a *specification* of a
#'  recipe step that will calculate the distance between
#'  points on a map to a reference location.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param lon,lat Selector functions to choose which variables are
#'  used by the step. See [selections()] for more details.
#' @param ref_lon,ref_lat Single numeric values for the location
#'  of the reference point.
#' @param is_lat_lon A logical: Are coordinates in latitude and longitude? If
#'  `TRUE` the Haversine formula is used and the returned result is meters. If
#'  `FALSE` the Pythagorean formula is used. Default is `TRUE` and for recipes
#'  created from previous versions of recipes, a value of `FALSE` is used.
#' @param log A logical: should the distance be transformed by
#'  the natural log function?
#' @param columns A character string of variable names that will
#'  be populated (eventually) by the `terms` argument.
#' @param name A single character value to use for the new
#'  predictor column. If a column exists with this name, an error is
#'  issued.
#' @template step-return
#' @family multivariate transformation steps
#' @references https://en.wikipedia.org/wiki/Haversine_formula
#' @export
#' @details `step_geodist` uses the Pythagorean theorem to calculate Euclidean
#'  distances if `is_lat_lon` is FALSE. If `is_lat_lon` is TRUE, the Haversine
#'  formula is used to calculate the great-circle distance in meters.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' echoing the values of `lat`, `lon`, `ref_lat`, `ref_lon`,
#' `is_lat_lon`, `name`, and `id` is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(Smithsonian, package = "modeldata")
#'
#' # How close are the museums to Union Station?
#' near_station <- recipe(~., data = Smithsonian) %>%
#'   update_role(name, new_role = "location") %>%
#'   step_geodist(
#'     lat = latitude, lon = longitude, log = FALSE,
#'     ref_lat = 38.8986312, ref_lon = -77.0062457,
#'     is_lat_lon = TRUE
#'   ) %>%
#'   prep(training = Smithsonian)
#'
#' bake(near_station, new_data = NULL) %>%
#'   arrange(geo_dist)
#'
#' tidy(near_station, number = 1)
step_geodist <- function(recipe,
                         lat = NULL,
                         lon = NULL,
                         role = "predictor",
                         trained = FALSE,
                         ref_lat = NULL,
                         ref_lon = NULL,
                         is_lat_lon = TRUE,
                         log = FALSE,
                         name = "geo_dist",
                         columns = NULL,
                         skip = FALSE,
                         id = rand_id("geodist")) {
  if (length(ref_lon) != 1 || !is.numeric(ref_lon)) {
    rlang::abort("`ref_lon` should be a single numeric value.")
  }
  if (length(ref_lat) != 1 || !is.numeric(ref_lat)) {
    rlang::abort("`ref_lat` should be a single numeric value.")
  }
  if (length(is_lat_lon) != 1 || !is.logical(is_lat_lon)) {
    rlang::abort("`is_lat_lon` should be a single logical value.")
  }
  if (length(log) != 1 || !is.logical(log)) {
    rlang::abort("`log` should be a single logical value.")
  }
  if (length(name) != 1 || !is.character(name)) {
    rlang::abort("`name` should be a single character value.")
  }

  if (is_lat_lon && abs(ref_lat) > 90.0) {
    rlang::abort("`ref_lat` should be between -90 and 90")
  }
  if (is_lat_lon && abs(ref_lon) > 180.0) {
    rlang::abort("`ref_lon` should be between -180 and 180")
  }


  add_step(
    recipe,
    step_geodist_new(
      lon = enquos(lon),
      lat = enquos(lat),
      role = role,
      trained = trained,
      ref_lon = ref_lon,
      ref_lat = ref_lat,
      is_lat_lon = is_lat_lon,
      log = log,
      name = name,
      columns = columns,
      skip = skip,
      id = id
    )
  )
}

step_geodist_new <-
  function(lon, lat, role, trained, ref_lon, ref_lat, is_lat_lon,
           log, name, columns, skip, id) {
    step(
      subclass = "geodist",
      lon = lon,
      lat = lat,
      role = role,
      trained = trained,
      ref_lon = ref_lon,
      ref_lat = ref_lat,
      is_lat_lon = is_lat_lon,
      log = log,
      name = name,
      columns = columns,
      skip = skip,
      id = id
    )
  }

# for backward compatibility
check_is_lat_lon <- function(x) {
  if (!"is_lat_lon" %in% names(x)) {
    x$is_lat_lon <- FALSE
  }
  x
}


#' @export
prep.step_geodist <- function(x, training, info = NULL, ...) {
  lon_name <- recipes_eval_select(x$lon, training, info)
  lat_name <- recipes_eval_select(x$lat, training, info)
  check_type(training[, c(lon_name, lat_name)], types = c("double", "integer"))

  x <- check_is_lat_lon(x)

  if (length(lon_name) > 1) {
    rlang::abort("`lon` should resolve to a single column name.")
  }
  check_type(training[, lon_name], types = c("double", "integer"))

  if (length(lat_name) > 1) {
    rlang::abort("`lat` should resolve to a single column name.")
  }
  check_type(training[, lat_name], types = c("double", "integer"))


  if (any(names(training) == x$name)) {
    rlang::abort("'", x$name, "' is already used in the data.")
  }

  step_geodist_new(
    lon = x$lon,
    lat = x$lat,
    role = x$role,
    trained = TRUE,
    ref_lon = x$ref_lon,
    ref_lat = x$ref_lat,
    is_lat_lon = x$is_lat_lon,
    log = x$log,
    name = x$name,
    columns = c(lat_name, lon_name),
    skip = x$skip,
    id = x$id
  )
}

# TODO case weights for distances
geo_dist_calc_xy <- function(x_1, y_1, x_2, y_2) {
  sqrt((x_1 - x_2)^2L + (y_1 - y_2)^2L)
}


# earth_radius = 6371e3 in meters
geo_dist_calc_lat_lon <- function(x_1, y_1, x_2, y_2, earth_radius = 6371e3,
                                  call = caller_env()) {
  if (any(abs(x_1) > 180.0)) {
    rlang::abort("All `lon` values should be between -180 and 180", call = call)
  }

  if (any(abs(y_1) > 90.0)) {
    rlang::abort("All `lat` values should be between -90 and 90", call = call)
  }

  to_rad <- pi / 180.0

  y_1 <- y_1 * to_rad
  y_2 <- y_2 * to_rad

  x_1 <- x_1 * to_rad
  x_2 <- x_2 * to_rad

  delta_lat <- (y_2 - y_1) / 2.0
  delta_lon <- (x_2 - x_1) / 2.0

  a <- sin(delta_lat)^2L + cos(y_1) * cos(y_2) * sin(delta_lon)^2L
  c <- 2.0 * atan2(sqrt(a), sqrt(1 - a))

  earth_radius * c
}


#' @export
bake.step_geodist <- function(object, new_data, ...) {
  check_new_data(names(object$columns), object, new_data)

  object <- check_is_lat_lon(object)

  if (object$is_lat_lon) {
    dist_vals <-
      geo_dist_calc_lat_lon(
        new_data[[object$columns[2]]], # lon
        new_data[[object$columns[1]]], # lat
        object$ref_lon,
        object$ref_lat
      )
  } else {
    dist_vals <-
      geo_dist_calc_xy(
        new_data[[object$columns[2]]], # lon
        new_data[[object$columns[1]]], # lat
        object$ref_lon,
        object$ref_lat
      )
  }

  if (object$log) {
    new_data[, object$name] <- log(dist_vals)
  } else {
    new_data[, object$name] <- dist_vals
  }

  new_data
}

print.step_geodist <-
  function(x, width = max(20, options()$width - 30), ...) {
    title <- paste(
      "Geographical distances from",
      format(x$ref_lat, digits = 10), "x",
      format(x$ref_lon, digits = 10), "using "
    )
    print_step(x$columns, c(x$lat, x$lon), x$trained, title, width)
    invisible(x)
  }



#' @rdname tidy.recipe
#' @export
tidy.step_geodist <- function(x, ...) {
  x <- check_is_lat_lon(x)

  if (is_trained(x)) {
    res <- tibble(
      latitude = x$columns[1],
      longitude = x$columns[2],
      ref_latitude = x$ref_lat,
      ref_longitude = x$ref_lon,
      is_lat_lon = x$is_lat_lon,
      name = x$name
    )
  } else {
    res <- tibble(
      latitude = sel2char(x$lat),
      longitude = sel2char(x$lon),
      ref_latitude = x$ref_lat,
      ref_longitude = x$ref_lon,
      is_lat_lon = x$is_lat_lon,
      name = x$name
    )
  }
  res$id <- x$id
  res
}