1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
#' Holiday Feature Generator
#'
#' `step_holiday` creates a *specification* of a
#' recipe step that will convert date data into one or more binary
#' indicator variables for common holidays.
#'
#' @inheritParams step_date
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param holidays A character string that includes at least one
#' holiday supported by the `timeDate` package. See
#' [timeDate::listHolidays()] for a complete list.
#' @param columns A character string of variables that will be
#' used as inputs. This field is a placeholder and will be
#' populated once [prep()] is used.
#' @template step-return
#' @family dummy variable and encoding steps
#' @seealso [timeDate::listHolidays()]
#' @export
#' @details Unlike some other steps, `step_holiday` does *not*
#' remove the original date variables by default. Set `keep_original_cols`
#' to `FALSE` to remove them.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the columns that will be affected) and `holiday` is returned.
#'
#' @template case-weights-not-supported
#'
#' @examples
#' library(lubridate)
#'
#' examples <- data.frame(someday = ymd("2000-12-20") + days(0:40))
#' holiday_rec <- recipe(~someday, examples) %>%
#' step_holiday(all_predictors())
#'
#' holiday_rec <- prep(holiday_rec, training = examples)
#' holiday_values <- bake(holiday_rec, new_data = examples)
#' holiday_values
#' @import timeDate
step_holiday <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
holidays = c("LaborDay", "NewYearsDay", "ChristmasDay"),
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("holiday")) {
if (!is_tune(holidays) & !is_varying(holidays)) {
all_days <- listHolidays()
if (!all(holidays %in% all_days)) {
rlang::abort("Invalid `holidays` value. See timeDate::listHolidays")
}
}
add_step(
recipe,
step_holiday_new(
terms = enquos(...),
role = role,
trained = trained,
holidays = holidays,
columns = columns,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_holiday_new <-
function(terms, role, trained, holidays, columns, keep_original_cols, skip, id) {
step(
subclass = "holiday",
terms = terms,
role = role,
trained = trained,
holidays = holidays,
columns = columns,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_holiday <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("date", "datetime"))
step_holiday_new(
terms = x$terms,
role = x$role,
trained = TRUE,
holidays = x$holidays,
columns = col_names,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
is_holiday <- function(hol, dt) {
years <- unique(year(dt))
na_year <- which(is.na(years))
if (length(na_year) > 0) {
years <- years[-na_year]
}
hdate <- holiday(year = years, Holiday = hol)
hdate <- as.Date(hdate)
out <- rep(0, length(dt))
out[dt %in% hdate] <- 1
out[is.na(dt)] <- NA
out
}
get_holiday_features <- function(dt, hdays) {
if (!is.Date(dt)) {
dt <- as.Date(dt)
}
hdays <- as.list(hdays)
hfeat <- lapply(hdays, is_holiday, dt = dt)
hfeat <- do.call("cbind", hfeat)
colnames(hfeat) <- unlist(hdays)
as_tibble(hfeat)
}
#' @export
bake.step_holiday <- function(object, new_data, ...) {
check_new_data(names(object$columns), object, new_data)
for (i in seq_along(object$columns)) {
tmp <- get_holiday_features(
dt = new_data[[object$columns[i]]],
hdays = object$holidays
)
names(tmp) <- paste(object$columns[i], names(tmp), sep = "_")
tmp <- purrr::map_dfc(tmp, vec_cast, integer())
new_data <- bind_cols(new_data, tmp)
}
keep_original_cols <- get_keep_original_cols(object)
if (!keep_original_cols) {
new_data <- new_data[, !(colnames(new_data) %in% object$columns), drop = FALSE]
}
new_data
}
print.step_holiday <-
function(x, width = max(20, options()$width - 29), ...) {
title <- "Holiday features from "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_holiday <- function(x, ...) {
res <- simple_terms(x, ...)
res <- tidyr::expand_grid(terms = res$terms, holiday = x$holidays)
res$id <- x$id
res
}
|