1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
|
#' Hyperbolic Transformations
#'
#' `step_hyperbolic` creates a *specification* of a
#' recipe step that will transform data using a hyperbolic
#' function.
#'
#' @inheritParams step_center
#' @param func A character value for the function. Valid values
#' are "sinh", "cosh", or "tanh".
#' @param inverse A logical: should the inverse function be used?
#' @param columns A character string of variable names that will
#' be populated (eventually) by the `terms` argument.
#' @template step-return
#' @family individual transformation steps
#' @export
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the columns that will be affected), `inverse`, and `func` is
#' returned.
#'
#' @template case-weights-not-supported
#'
#' @examples
#' set.seed(313)
#' examples <- matrix(rnorm(40), ncol = 2)
#' examples <- as.data.frame(examples)
#'
#' rec <- recipe(~ V1 + V2, data = examples)
#'
#' cos_trans <- rec %>%
#' step_hyperbolic(
#' all_numeric_predictors(),
#' func = "cosh", inverse = FALSE
#' )
#'
#' cos_obj <- prep(cos_trans, training = examples)
#'
#' transformed_te <- bake(cos_obj, examples)
#' plot(examples$V1, transformed_te$V1)
#'
#' tidy(cos_trans, number = 1)
#' tidy(cos_obj, number = 1)
step_hyperbolic <-
function(recipe,
...,
role = NA,
trained = FALSE,
func = c("sinh", "cosh", "tanh"),
inverse = TRUE,
columns = NULL,
skip = FALSE,
id = rand_id("hyperbolic")) {
func <- rlang::arg_match(func)
add_step(
recipe,
step_hyperbolic_new(
terms = enquos(...),
role = role,
trained = trained,
func = func,
inverse = inverse,
columns = columns,
skip = skip,
id = id
)
)
}
step_hyperbolic_new <-
function(terms, role, trained, func, inverse, columns, skip, id) {
step(
subclass = "hyperbolic",
terms = terms,
role = role,
trained = trained,
func = func,
inverse = inverse,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_hyperbolic <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
step_hyperbolic_new(
terms = x$terms,
role = x$role,
trained = TRUE,
func = x$func,
inverse = x$inverse,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_hyperbolic <- function(object, new_data, ...) {
check_new_data(names(object$columns), object, new_data)
func <- if (object$inverse) {
get(paste0("a", object$func))
} else {
get(object$func)
}
col_names <- object$columns
for (i in seq_along(col_names)) {
new_data[, col_names[i]] <-
func(getElement(new_data, col_names[i]))
}
new_data
}
print.step_hyperbolic <-
function(x, width = max(20, options()$width - 32), ...) {
ttl <- paste("Hyperbolic", substr(x$func, 1, 3))
if (x$inverse) {
ttl <- paste(ttl, "(inv)")
}
title <- glue::glue("{ttl} transformation on ")
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_hyperbolic <- function(x, ...) {
out <- simple_terms(x, ...)
out$inverse <- x$inverse
out$func <- x$func
out$id <- x$id
out
}
|