File: hyperbolic.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (142 lines) | stat: -rw-r--r-- 3,465 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#' Hyperbolic Transformations
#'
#' `step_hyperbolic` creates a *specification* of a
#'  recipe step that will transform data using a hyperbolic
#'  function.
#'
#' @inheritParams step_center
#' @param func A character value for the function. Valid values
#'  are "sinh", "cosh", or "tanh".
#' @param inverse A logical: should the inverse function be used?
#' @param columns A character string of variable names that will
#'  be populated (eventually) by the `terms` argument.
#' @template step-return
#' @family individual transformation steps
#' @export
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the columns that will be affected), `inverse`, and `func` is
#' returned.
#'
#' @template case-weights-not-supported
#'
#' @examples
#' set.seed(313)
#' examples <- matrix(rnorm(40), ncol = 2)
#' examples <- as.data.frame(examples)
#'
#' rec <- recipe(~ V1 + V2, data = examples)
#'
#' cos_trans <- rec %>%
#'   step_hyperbolic(
#'     all_numeric_predictors(),
#'     func = "cosh", inverse = FALSE
#'   )
#'
#' cos_obj <- prep(cos_trans, training = examples)
#'
#' transformed_te <- bake(cos_obj, examples)
#' plot(examples$V1, transformed_te$V1)
#'
#' tidy(cos_trans, number = 1)
#' tidy(cos_obj, number = 1)
step_hyperbolic <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           func = c("sinh", "cosh", "tanh"),
           inverse = TRUE,
           columns = NULL,
           skip = FALSE,
           id = rand_id("hyperbolic")) {

    func <- rlang::arg_match(func)

    add_step(
      recipe,
      step_hyperbolic_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        func = func,
        inverse = inverse,
        columns = columns,
        skip = skip,
        id = id
      )
    )
  }

step_hyperbolic_new <-
  function(terms, role, trained, func, inverse, columns, skip, id) {
    step(
      subclass = "hyperbolic",
      terms = terms,
      role = role,
      trained = trained,
      func = func,
      inverse = inverse,
      columns = columns,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_hyperbolic <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("double", "integer"))

  step_hyperbolic_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    func = x$func,
    inverse = x$inverse,
    columns = col_names,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_hyperbolic <- function(object, new_data, ...) {
  check_new_data(names(object$columns), object, new_data)

  func <- if (object$inverse) {
    get(paste0("a", object$func))
  } else {
    get(object$func)
  }
  col_names <- object$columns
  for (i in seq_along(col_names)) {
    new_data[, col_names[i]] <-
      func(getElement(new_data, col_names[i]))
  }
  new_data
}

print.step_hyperbolic <-
  function(x, width = max(20, options()$width - 32), ...) {
    ttl <- paste("Hyperbolic", substr(x$func, 1, 3))
    if (x$inverse) {
      ttl <- paste(ttl, "(inv)")
    }
    title <- glue::glue("{ttl} transformation on ")
    print_step(x$columns, x$terms, x$trained, title, width)
    invisible(x)
  }

#' @rdname tidy.recipe
#' @export
tidy.step_hyperbolic <- function(x, ...) {
  out <- simple_terms(x, ...)
  out$inverse <- x$inverse
  out$func <- x$func
  out$id <- x$id
  out
}