File: impute_knn.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (340 lines) | stat: -rw-r--r-- 9,754 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
#' Impute via k-nearest neighbors
#'
#' `step_impute_knn` creates a *specification* of a recipe step that will
#'  impute missing data using nearest neighbors.
#'
#' @inheritParams step_impute_bag
#' @inheritParams step_center
#' @param neighbors The number of neighbors.
#' @param options A named list of options to pass to [gower::gower_topn()].
#'  Available options are currently `nthread` and `eps`.
#' @param ref_data A tibble of data that will reflect the data preprocessing
#'  done up to the point of this imputation step. This is `NULL` until the step
#'  is trained by [prep()].
#' @param columns The column names that will be imputed and used for
#'  imputation. This is `NULL` until the step is trained by [prep()].
#' @template step-return
#' @family imputation steps
#' @export
#' @details The step uses the training set to impute any other data sets. The
#'  only distance function available is Gower's distance which can be used for
#'  mixtures of nominal and numeric data.
#'
#' Once the nearest neighbors are determined, the mode is used to predictor
#'  nominal variables and the mean is used for numeric data. Note that, if the
#'  underlying data are integer, the mean will be converted to an integer too.
#'
#' Note that if a variable that is to be imputed is also in `impute_with`,
#'  this variable will be ignored.
#'
#' It is possible that missing values will still occur after imputation if a
#'  large majority (or all) of the imputing variables are also missing.
#'
#' As of `recipes` 0.1.16, this function name changed from `step_knnimpute()`
#'    to `step_impute_knn()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables for imputation), `predictors`
#' (those variables used to impute), and `neighbors` is returned.
#'
#' @template case-weights-not-supported
#'
#' @references Gower, C. (1971) "A general coefficient of similarity and some
#'  of its properties," Biometrics, 857-871.
#' @examplesIf rlang::is_installed("modeldata")
#' library(recipes)
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#' biomass_te_whole <- biomass_te
#'
#' # induce some missing data at random
#' set.seed(9039)
#' carb_missing <- sample(1:nrow(biomass_te), 3)
#' nitro_missing <- sample(1:nrow(biomass_te), 3)
#'
#' biomass_te$carbon[carb_missing] <- NA
#' biomass_te$nitrogen[nitro_missing] <- NA
#'
#' rec <- recipe(
#'   HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'   data = biomass_tr
#' )
#'
#' ratio_recipe <- rec %>%
#'   step_impute_knn(all_predictors(), neighbors = 3)
#' ratio_recipe2 <- prep(ratio_recipe, training = biomass_tr)
#' imputed <- bake(ratio_recipe2, biomass_te)
#'
#' # how well did it work?
#' summary(biomass_te_whole$carbon)
#' cbind(
#'   before = biomass_te_whole$carbon[carb_missing],
#'   after = imputed$carbon[carb_missing]
#' )
#'
#' summary(biomass_te_whole$nitrogen)
#' cbind(
#'   before = biomass_te_whole$nitrogen[nitro_missing],
#'   after = imputed$nitrogen[nitro_missing]
#' )
#'
#' tidy(ratio_recipe, number = 1)
#' tidy(ratio_recipe2, number = 1)
step_impute_knn <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           neighbors = 5,
           impute_with = imp_vars(all_predictors()),
           options = list(nthread = 1, eps = 1e-08),
           ref_data = NULL,
           columns = NULL,
           skip = FALSE,
           id = rand_id("impute_knn")) {
    if (is.null(impute_with)) {
      rlang::abort("Please list some variables in `impute_with`")
    }

    if (!is.list(options)) {
      rlang::abort("`options` should be a named list.")
    }
    opt_nms <- names(options)
    if (length(options) > 0) {
      if (any(!(opt_nms %in% c("eps", "nthread")))) {
        rlang::abort("Availible options are 'eps', and 'nthread'.")
      }
      if (all(opt_nms != "nthread")) {
        options$nthread <- 1
      }
      if (all(opt_nms != "eps")) {
        options$eps <- 1e-08
      }
    } else {
      options <- list(nthread = 1, eps = 1e-08)
    }

    add_step(
      recipe,
      step_impute_knn_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        neighbors = neighbors,
        impute_with = impute_with,
        ref_data = ref_data,
        options = options,
        columns = columns,
        skip = skip,
        id = id
      )
    )
  }

#' @rdname step_impute_knn
#' @export
step_knnimpute <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           neighbors = 5,
           impute_with = imp_vars(all_predictors()),
           options = list(nthread = 1, eps = 1e-08),
           ref_data = NULL,
           columns = NULL,
           skip = FALSE,
           id = rand_id("impute_knn")) {
    lifecycle::deprecate_stop(
      when = "0.1.16",
      what = "recipes::step_knnimpute()",
      with = "recipes::step_impute_knn()"
    )
    step_impute_knn(
      recipe,
      ...,
      role = role,
      trained = trained,
      neighbors = neighbors,
      impute_with = impute_with,
      options = options,
      ref_data = ref_data,
      columns = columns,
      skip = skip,
      id = id
    )
  }

step_impute_knn_new <-
  function(terms, role, trained, neighbors, impute_with, ref_data, options,
           columns, skip, id) {
    step(
      subclass = "impute_knn",
      terms = terms,
      role = role,
      trained = trained,
      neighbors = neighbors,
      impute_with = impute_with,
      ref_data = ref_data,
      options = options,
      columns = columns,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_impute_knn <- function(x, training, info = NULL, ...) {
  var_lists <-
    impute_var_lists(
      to_impute = x$terms,
      impute_using = x$impute_with,
      training = training,
      info = info
    )
  all_x_vars <- lapply(var_lists, function(x) c(x$x, x$y))
  all_x_vars <- unique(unlist(all_x_vars))

  step_impute_knn_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    neighbors = x$neighbors,
    impute_with = x$impute_with,
    ref_data = training[, all_x_vars],
    options = x$options,
    columns = var_lists,
    skip = x$skip,
    id = x$id
  )
}

#' @export
#' @keywords internal
prep.step_knnimpute <- prep.step_impute_knn

nn_index <- function(miss_data, ref_data, vars, K, opt) {
  gower_topn(
    ref_data[, vars],
    miss_data[, vars],
    n = K,
    nthread = opt$nthread,
    eps = opt$eps
  )$index
}

nn_pred <- function(index, dat) {
  dat <- dat[index, ]
  dat <- getElement(dat, names(dat))
  dat <- dat[!is.na(dat)]
  est <- if (is.factor(dat) | is.character(dat)) {
    mode_est(dat)
  } else {
    mean(dat)
  }
  est
}


#' @export
bake.step_impute_knn <- function(object, new_data, ...) {
  col_names <- purrr::map(object$columns, function(x) unname(x$x)) %>%
    purrr::flatten_chr() %>%
    unique()
  check_new_data(col_names, object, new_data)

  missing_rows <- !complete.cases(new_data)
  if (!any(missing_rows)) {
    return(new_data)
  }

  old_data <- new_data
  for (i in seq(along.with = object$columns)) {
    imp_var <- object$columns[[i]]$y
    missing_rows <- !complete.cases(new_data[, imp_var])
    if (any(missing_rows)) {
      preds <- object$columns[[i]]$x
      imp_data <- old_data[missing_rows, preds, drop = FALSE]
      ## do a better job of checking this:
      if (all(is.na(imp_data))) {
        rlang::warn("All predictors are missing; cannot impute")
      } else {
        imp_var_complete <- !is.na(object$ref_data[[imp_var]])
        nn_ind <- nn_index(
          object$ref_data[imp_var_complete, ],
          imp_data, preds,
          object$neighbors,
          object$options
        )
        pred_vals <-
          apply(nn_ind, 2, nn_pred, dat = object$ref_data[imp_var_complete, imp_var])
        pred_vals <- cast(pred_vals, object$ref_data[[imp_var]])
        new_data[[imp_var]] <- vec_cast(new_data[[imp_var]], pred_vals)
        new_data[missing_rows, imp_var] <- pred_vals
      }
    }
  }
  new_data
}

#' @export
#' @keywords internal
bake.step_knnimpute <- bake.step_impute_knn

#' @export
print.step_impute_knn <-
  function(x, width = max(20, options()$width - 31), ...) {
    all_y_vars <- lapply(x$columns, function(x) x$y)
    all_y_vars <- unique(unlist(all_y_vars))
    title <- "K-nearest neighbor imputation for "
    print_step(all_y_vars, x$terms, x$trained, title, width)
    invisible(x)
  }

#' @export
#' @keywords internal
print.step_knnimpute <- print.step_impute_knn

#' @rdname tidy.recipe
#' @export
tidy.step_impute_knn <- function(x, ...) {
  if (is_trained(x)) {
    terms <- purrr::map(x$columns, function(x) unname(x$y))
    predictors <- purrr::map(x$columns, function(x) unname(x$x))
    res <- tibble(terms = terms, predictors = predictors)
    res <- tidyr::unchop(
      data = res,
      cols = tidyselect::all_of(c("terms", "predictors")),
      ptype = list(terms = character(), predictors = character())
    )
    res$neighbors <- rep(x$neighbors, nrow(res))
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names, predictors = na_chr, neighbors = x$neighbors)
  }
  res$id <- x$id
  res
}

#' @export
#' @keywords internal
tidy.step_knnimpute <- tidy.step_impute_knn

#' @export
tunable.step_impute_knn <- function(x, ...) {
  tibble::tibble(
    name = "neighbors",
    call_info = list(list(pkg = "dials", fun = "neighbors", range = c(1L, 10L))),
    source = "recipe",
    component = "step_impute_knn",
    component_id = x$id
  )
}

#' @export
#' @keywords internal
tunable.step_knnimpute <- tunable.step_impute_knn