1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
#' Impute numeric variables via a linear model
#'
#' `step_impute_linear` creates a *specification* of a recipe step that will
#' create linear regression models to impute missing data.
#'
#' @inheritParams step_impute_bag
#' @inheritParams step_center
#' @param ... One or more selector functions to choose variables to be imputed;
#' these variables **must** be of type `numeric`. When used with `imp_vars`,
#' these dots indicate which variables are used to predict the missing data
#' in each variable. See [selections()] for more details.
#' @param models The [lm()] objects are stored here once the linear models
#' have been trained by [prep()].
#' @template step-return
#' @family imputation steps
#' @export
#' @details For each variable requiring imputation, a linear model is fit
#' where the outcome is the variable of interest and the predictors are any
#' other variables listed in the `impute_with` formula. Note that if a variable
#' that is to be imputed is also in `impute_with`, this variable will be ignored.
#'
#' The variable(s) to be imputed must be of type `numeric`. The imputed values
#' will keep the same type as their original data (i.e, model predictions are
#' coerced to integer as needed).
#'
#' Since this is a linear regression, the imputation model only uses complete
#' cases for the training set predictors.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with
#' columns `terms` (the selectors or variables selected) and `model` (the
#' bagged tree object) is returned.
#'
#' @template case-weights-unsupervised
#'
#' @references Kuhn, M. and Johnson, K. (2013).
#' *Feature Engineering and Selection*
#' \url{https://bookdown.org/max/FES/handling-missing-data.html}
#' @examplesIf rlang::is_installed(c("modeldata", "ggplot2"))
#' data(ames, package = "modeldata")
#' set.seed(393)
#' ames_missing <- ames
#' ames_missing$Longitude[sample(1:nrow(ames), 200)] <- NA
#'
#' imputed_ames <-
#' recipe(Sale_Price ~ ., data = ames_missing) %>%
#' step_impute_linear(
#' Longitude,
#' impute_with = imp_vars(Latitude, Neighborhood, MS_Zoning, Alley)
#' ) %>%
#' prep(ames_missing)
#'
#' imputed <-
#' bake(imputed_ames, new_data = ames_missing) %>%
#' dplyr::rename(imputed = Longitude) %>%
#' bind_cols(ames %>% dplyr::select(original = Longitude)) %>%
#' bind_cols(ames_missing %>% dplyr::select(Longitude)) %>%
#' dplyr::filter(is.na(Longitude))
#'
#' library(ggplot2)
#' ggplot(imputed, aes(x = original, y = imputed)) +
#' geom_abline(col = "green") +
#' geom_point(alpha = .3) +
#' coord_equal() +
#' labs(title = "Imputed Values")
step_impute_linear <-
function(recipe,
...,
role = NA,
trained = FALSE,
impute_with = imp_vars(all_predictors()),
models = NULL,
skip = FALSE,
id = rand_id("impute_linear")) {
if (is.null(impute_with)) {
rlang::abort("Please provide some variables to `impute_with`.")
}
add_step(
recipe,
step_impute_linear_new(
terms = enquos(...),
role = role,
trained = trained,
impute_with = impute_with,
models = models,
skip = skip,
id = id,
case_weights = NULL
)
)
}
step_impute_linear_new <-
function(terms, role, trained, models, impute_with,
skip, id, case_weights) {
step(
subclass = "impute_linear",
terms = terms,
role = role,
trained = trained,
impute_with = impute_with,
models = models,
skip = skip,
id = id,
case_weights = case_weights
)
}
lm_wrap <- function(vars, dat, wts = NULL, call = caller_env(2)) {
dat <- as.data.frame(dat[, c(vars$y, vars$x)])
complete <- stats::complete.cases(dat)
dat <- dat[complete, ]
wts <- wts[complete]
if (nrow(dat) == 0) {
rlang::abort(
paste(
"The data used by step_impute_linear() did not have any rows",
"where the imputation values were all complete."
),
call = call
)
}
if (!is.numeric(dat[[vars$y]])) {
rlang::abort(
glue::glue(
"Variable '{vars$y}' chosen for linear regression imputation ",
"must be of type numeric."
),
call = call
)
}
if (is.null(wts)) {
wts <- rep(1, nrow(dat))
} else {
wts <- as.double(wts)
}
out <- lm(as.formula(paste0(vars$y, "~", ".")), data = dat, weights = wts,
model = FALSE)
out$..imp_vars <- vars$x
attr(out$terms, ".Environment") <- rlang::base_env()
## remove other unneeded elements for predict
out$call <- NULL
out$assign <- NULL
out$fitted.values <- NULL
out$df.residual <- NULL
out$residuals <- NULL
out$qr$qr <- NULL
out$effects <- NULL
out
}
#' @export
prep.step_impute_linear <- function(x, training, info = NULL, ...) {
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
var_lists <-
impute_var_lists(
to_impute = x$terms,
impute_using = x$impute_with,
training = training,
info = info
)
x$models <- lapply(
var_lists,
lm_wrap,
dat = training,
wts = wts
)
names(x$models) <- vapply(var_lists, function(x) x$y, c(""))
step_impute_linear_new(
terms = x$terms,
role = x$role,
trained = TRUE,
models = x$models,
impute_with = x$impute_with,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
bake.step_impute_linear <- function(object, new_data, ...) {
check_new_data(names(object$models), object, new_data)
missing_rows <- !complete.cases(new_data)
if (!any(missing_rows)) {
return(new_data)
}
old_data <- new_data
for (i in seq(along.with = object$models)) {
imp_var <- names(object$models)[i]
missing_rows <- !complete.cases(new_data[, imp_var])
if (any(missing_rows)) {
preds <- object$models[[imp_var]]$..imp_vars
pred_data <- old_data[missing_rows, preds, drop = FALSE]
## do a better job of checking this:
if (any(is.na(pred_data))) {
rlang::warn("
There were missing values in the predictor(s) used to impute;
imputation did not occur.
")
} else {
pred_vals <- predict(object$models[[imp_var]], pred_data)
pred_vals <- cast(pred_vals, new_data[[imp_var]])
new_data[[imp_var]] <- vec_cast(new_data[[imp_var]], pred_vals)
new_data[missing_rows, imp_var] <- pred_vals
}
}
}
new_data
}
#' @export
print.step_impute_linear <-
function(x, width = max(20, options()$width - 31), ...) {
title <- "Linear regression imputation for "
print_step(names(x$models), x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_impute_linear <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$models),
model = unname(x$models)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, model = list(NULL))
}
res$id <- x$id
res
}
|