1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
#' Impute numeric data below the threshold of measurement
#'
#' `step_impute_lower` creates a *specification* of a recipe step
#' designed for cases where the non-negative numeric data cannot be
#' measured below a known value. In these cases, one method for
#' imputing the data is to substitute the truncated value by a
#' random uniform number between zero and the truncation point.
#'
#' @inheritParams step_center
#' @param threshold A named numeric vector of lower bounds. This is
#' `NULL` until computed by [prep()].
#' @template step-return
#' @family imputation steps
#' @export
#' @details `step_impute_lower` estimates the variable minimums
#' from the data used in the `training` argument of `prep.recipe`.
#' `bake.recipe` then simulates a value for any data at the minimum
#' with a random uniform value between zero and the minimum.
#'
#' As of `recipes` 0.1.16, this function name changed from `step_lowerimpute()`
#' to `step_impute_lower()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected) and `value` for the
#' estimated threshold is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' library(recipes)
#' data(biomass, package = "modeldata")
#'
#' ## Truncate some values to emulate what a lower limit of
#' ## the measurement system might look like
#'
#' biomass$carbon <- ifelse(biomass$carbon > 40, biomass$carbon, 40)
#' biomass$hydrogen <- ifelse(biomass$hydrogen > 5, biomass$carbon, 5)
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' impute_rec <- rec %>%
#' step_impute_lower(carbon, hydrogen)
#'
#' tidy(impute_rec, number = 1)
#'
#' impute_rec <- prep(impute_rec, training = biomass_tr)
#'
#' tidy(impute_rec, number = 1)
#'
#' transformed_te <- bake(impute_rec, biomass_te)
#'
#' plot(transformed_te$carbon, biomass_te$carbon,
#' ylab = "pre-imputation", xlab = "imputed"
#' )
step_impute_lower <-
function(recipe,
...,
role = NA,
trained = FALSE,
threshold = NULL,
skip = FALSE,
id = rand_id("impute_lower")) {
add_step(
recipe,
step_impute_lower_new(
terms = enquos(...),
role = role,
trained = trained,
threshold = threshold,
skip = skip,
id = id
)
)
}
#' @rdname step_impute_lower
#' @export
step_lowerimpute <- function(recipe,
...,
role = NA,
trained = FALSE,
threshold = NULL,
skip = FALSE,
id = rand_id("impute_lower")) {
lifecycle::deprecate_stop(
when = "0.1.16",
what = "recipes::step_lowerimpute()",
with = "recipes::step_impute_lower()"
)
step_impute_lower(
recipe,
...,
role = role,
trained = trained,
threshold = threshold,
skip = skip,
id = id
)
}
step_impute_lower_new <-
function(terms, role, trained, threshold, skip, id) {
step(
subclass = "impute_lower",
terms = terms,
role = role,
trained = trained,
threshold = threshold,
skip = skip,
id = id
)
}
#' @export
prep.step_impute_lower <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
threshold <-
vapply(training[, col_names], min, numeric(1), na.rm = TRUE)
if (any(threshold < 0)) {
rlang::abort(
paste0(
"Some columns have negative values. Lower bound ",
"imputation is intended for data bounded at zero."
)
)
}
step_impute_lower_new(
terms = x$terms,
role = x$role,
trained = TRUE,
threshold = threshold,
skip = x$skip,
id = x$id
)
}
#' @export
#' @keywords internal
prep.step_lowerimpute <- prep.step_impute_lower
#' @export
bake.step_impute_lower <- function(object, new_data, ...) {
check_new_data(names(object$threshold), object, new_data)
for (i in names(object$threshold)) {
affected <- which(new_data[[i]] <= object$threshold[[i]])
if (length(affected) > 0) {
new_data[[i]][affected] <- runif(
length(affected),
max = object$threshold[[i]]
)
}
}
new_data
}
#' @export
#' @keywords internal
bake.step_lowerimpute <- bake.step_impute_lower
#' @export
print.step_impute_lower <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Lower bound imputation for "
print_step(names(x$threshold), x$terms, x$trained, title, width)
invisible(x)
}
#' @export
#' @keywords internal
print.step_lowerimpute <- print.step_impute_lower
#' @rdname tidy.recipe
#' @export
tidy.step_impute_lower <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$threshold),
value = unname(x$threshold)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, value = na_dbl)
}
res$id <- x$id
res
}
#' @export
#' @keywords internal
tidy.step_lowerimpute <- tidy.step_impute_lower
|