File: impute_mean.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (246 lines) | stat: -rw-r--r-- 6,393 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#' Impute numeric data using the mean
#'
#' `step_impute_mean` creates a *specification* of a recipe step that will
#'  substitute missing values of numeric variables by the training set mean of
#'  those variables.
#'
#' @inheritParams step_center
#' @param means A named numeric vector of means. This is `NULL` until computed
#'  by [prep()]. Note that, if the original data are integers, the mean
#'  will be converted to an integer to maintain the same data type.
#' @param trim The fraction (0 to 0.5) of observations to be trimmed from each
#'  end of the variables before the mean is computed. Values of trim outside
#'  that range are taken as the nearest endpoint.
#' @template step-return
#' @family imputation steps
#' @export
#' @details `step_impute_mean` estimates the variable means from the data used
#'  in the `training` argument of `prep.recipe`. `bake.recipe` then applies the
#'  new values to new data sets using these averages.
#'
#'  As of `recipes` 0.1.16, this function name changed from `step_meanimpute()`
#'    to `step_impute_mean()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected) and `model` (the mean
#' value) is returned.
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data("credit_data", package = "modeldata")
#'
#' ## missing data per column
#' vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
#'
#' set.seed(342)
#' in_training <- sample(1:nrow(credit_data), 2000)
#'
#' credit_tr <- credit_data[in_training, ]
#' credit_te <- credit_data[-in_training, ]
#' missing_examples <- c(14, 394, 565)
#'
#' rec <- recipe(Price ~ ., data = credit_tr)
#'
#' impute_rec <- rec %>%
#'   step_impute_mean(Income, Assets, Debt)
#'
#' imp_models <- prep(impute_rec, training = credit_tr)
#'
#' imputed_te <- bake(imp_models, new_data = credit_te, everything())
#'
#' credit_te[missing_examples, ]
#' imputed_te[missing_examples, names(credit_te)]
#'
#' tidy(impute_rec, number = 1)
#' tidy(imp_models, number = 1)
step_impute_mean <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           means = NULL,
           trim = 0,
           skip = FALSE,
           id = rand_id("impute_mean")) {
    add_step(
      recipe,
      step_impute_mean_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        means = means,
        trim = trim,
        skip = skip,
        id = id,
        case_weights = NULL
      )
    )
  }

#' @rdname step_impute_mean
#' @export
step_meanimpute <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           means = NULL,
           trim = 0,
           skip = FALSE,
           id = rand_id("impute_mean")) {
    lifecycle::deprecate_stop(
      when = "0.1.16",
      what = "recipes::step_meanimpute()",
      with = "recipes::step_impute_mean()"
    )
    step_impute_mean(
      recipe,
      ...,
      role = role,
      trained = trained,
      means = means,
      trim = trim,
      skip = skip,
      id = id
    )
  }

step_impute_mean_new <-
  function(terms, role, trained, means, trim, skip, id, case_weights) {
    step(
      subclass = "impute_mean",
      terms = terms,
      role = role,
      trained = trained,
      means = means,
      trim = trim,
      skip = skip,
      id = id,
      case_weights = case_weights
    )
  }

trim <- function(x, trim) {
  if (trim == 0) {
    return(x)
  }
  # Adapted from mean.default
  x <- sort(x, na.last = TRUE)
  na_ind <- is.na(x)
  if (!is.numeric(trim) || length(trim) != 1L)
    stop("'trim' must be numeric of length one")
  n <- length(x[!na_ind])
  if (trim > 0 && n) {
    if (is.complex(x))
      stop("trimmed means are not defined for complex data")
    if (trim >= 0.5)
      return(stats::median(x[!na_ind], na.rm = FALSE))
    lo <- floor(n * trim) + 1
    hi <- n + 1 - lo
    x[seq(1, lo - 1)] <- NA
    x[seq(hi + 1, n)] <- NA
  }
  x
}

#' @export
prep.step_impute_mean <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("double", "integer"))

  wts <- get_case_weights(info, training)
  were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
  if (isFALSE(were_weights_used)) {
    wts <- NULL
  }

  trimmed <- purrr::map_dfc(training[, col_names], trim, x$trim)

  means <- averages(trimmed, wts = wts)
  means <- purrr::map2(means, trimmed, cast)

  step_impute_mean_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    means,
    trim = x$trim,
    skip = x$skip,
    id = x$id,
    case_weights = were_weights_used
  )
}

#' @export
#' @keywords internal
prep.step_meanimpute <- prep.step_impute_mean

#' @export
bake.step_impute_mean <- function(object, new_data, ...) {
  check_new_data(names(object$means), object, new_data)

  for (i in names(object$means)) {
    if (any(is.na(new_data[[i]]))) {
      new_data[[i]] <- vec_cast(new_data[[i]], object$means[[i]])
    }
    new_data[is.na(new_data[[i]]), i] <- object$means[[i]]
  }
  new_data
}

#' @export
#' @keywords internal
bake.step_meanimpute <- bake.step_impute_mean

#' @export
print.step_impute_mean <-
  function(x, width = max(20, options()$width - 30), ...) {
    title <- "Mean imputation for "
    print_step(names(x$means), x$terms, x$trained, title, width,
               case_weights = x$case_weights)
    invisible(x)
  }

#' @export
#' @keywords internal
print.step_meanimpute <- print.step_impute_mean

#' @rdname tidy.recipe
#' @export
tidy.step_impute_mean <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(
      terms = names(x$means),
      model = vctrs::list_unchop(unname(x$means), ptype = double())
    )
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names, model = na_dbl)
  }
  res$id <- x$id
  res
}

#' @export
#' @keywords internal
tidy.step_meanimpute <- tidy.step_impute_mean

#' @export
tunable.step_impute_mean <- function(x, ...) {
  tibble::tibble(
    name = "trim",
    call_info = list(
      list(pkg = "dials", fun = "trim_amount")
    ),
    source = "recipe",
    component = "step_impute_mean",
    component_id = x$id
  )
}

#' @export
#' @keywords internal
tunable.step_meanimpute <- tunable.step_impute_mean