1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
#' Impute numeric data using the mean
#'
#' `step_impute_mean` creates a *specification* of a recipe step that will
#' substitute missing values of numeric variables by the training set mean of
#' those variables.
#'
#' @inheritParams step_center
#' @param means A named numeric vector of means. This is `NULL` until computed
#' by [prep()]. Note that, if the original data are integers, the mean
#' will be converted to an integer to maintain the same data type.
#' @param trim The fraction (0 to 0.5) of observations to be trimmed from each
#' end of the variables before the mean is computed. Values of trim outside
#' that range are taken as the nearest endpoint.
#' @template step-return
#' @family imputation steps
#' @export
#' @details `step_impute_mean` estimates the variable means from the data used
#' in the `training` argument of `prep.recipe`. `bake.recipe` then applies the
#' new values to new data sets using these averages.
#'
#' As of `recipes` 0.1.16, this function name changed from `step_meanimpute()`
#' to `step_impute_mean()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected) and `model` (the mean
#' value) is returned.
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data("credit_data", package = "modeldata")
#'
#' ## missing data per column
#' vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
#'
#' set.seed(342)
#' in_training <- sample(1:nrow(credit_data), 2000)
#'
#' credit_tr <- credit_data[in_training, ]
#' credit_te <- credit_data[-in_training, ]
#' missing_examples <- c(14, 394, 565)
#'
#' rec <- recipe(Price ~ ., data = credit_tr)
#'
#' impute_rec <- rec %>%
#' step_impute_mean(Income, Assets, Debt)
#'
#' imp_models <- prep(impute_rec, training = credit_tr)
#'
#' imputed_te <- bake(imp_models, new_data = credit_te, everything())
#'
#' credit_te[missing_examples, ]
#' imputed_te[missing_examples, names(credit_te)]
#'
#' tidy(impute_rec, number = 1)
#' tidy(imp_models, number = 1)
step_impute_mean <-
function(recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
trim = 0,
skip = FALSE,
id = rand_id("impute_mean")) {
add_step(
recipe,
step_impute_mean_new(
terms = enquos(...),
role = role,
trained = trained,
means = means,
trim = trim,
skip = skip,
id = id,
case_weights = NULL
)
)
}
#' @rdname step_impute_mean
#' @export
step_meanimpute <-
function(recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
trim = 0,
skip = FALSE,
id = rand_id("impute_mean")) {
lifecycle::deprecate_stop(
when = "0.1.16",
what = "recipes::step_meanimpute()",
with = "recipes::step_impute_mean()"
)
step_impute_mean(
recipe,
...,
role = role,
trained = trained,
means = means,
trim = trim,
skip = skip,
id = id
)
}
step_impute_mean_new <-
function(terms, role, trained, means, trim, skip, id, case_weights) {
step(
subclass = "impute_mean",
terms = terms,
role = role,
trained = trained,
means = means,
trim = trim,
skip = skip,
id = id,
case_weights = case_weights
)
}
trim <- function(x, trim) {
if (trim == 0) {
return(x)
}
# Adapted from mean.default
x <- sort(x, na.last = TRUE)
na_ind <- is.na(x)
if (!is.numeric(trim) || length(trim) != 1L)
stop("'trim' must be numeric of length one")
n <- length(x[!na_ind])
if (trim > 0 && n) {
if (is.complex(x))
stop("trimmed means are not defined for complex data")
if (trim >= 0.5)
return(stats::median(x[!na_ind], na.rm = FALSE))
lo <- floor(n * trim) + 1
hi <- n + 1 - lo
x[seq(1, lo - 1)] <- NA
x[seq(hi + 1, n)] <- NA
}
x
}
#' @export
prep.step_impute_mean <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
trimmed <- purrr::map_dfc(training[, col_names], trim, x$trim)
means <- averages(trimmed, wts = wts)
means <- purrr::map2(means, trimmed, cast)
step_impute_mean_new(
terms = x$terms,
role = x$role,
trained = TRUE,
means,
trim = x$trim,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
#' @keywords internal
prep.step_meanimpute <- prep.step_impute_mean
#' @export
bake.step_impute_mean <- function(object, new_data, ...) {
check_new_data(names(object$means), object, new_data)
for (i in names(object$means)) {
if (any(is.na(new_data[[i]]))) {
new_data[[i]] <- vec_cast(new_data[[i]], object$means[[i]])
}
new_data[is.na(new_data[[i]]), i] <- object$means[[i]]
}
new_data
}
#' @export
#' @keywords internal
bake.step_meanimpute <- bake.step_impute_mean
#' @export
print.step_impute_mean <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Mean imputation for "
print_step(names(x$means), x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
#' @export
#' @keywords internal
print.step_meanimpute <- print.step_impute_mean
#' @rdname tidy.recipe
#' @export
tidy.step_impute_mean <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$means),
model = vctrs::list_unchop(unname(x$means), ptype = double())
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, model = na_dbl)
}
res$id <- x$id
res
}
#' @export
#' @keywords internal
tidy.step_meanimpute <- tidy.step_impute_mean
#' @export
tunable.step_impute_mean <- function(x, ...) {
tibble::tibble(
name = "trim",
call_info = list(
list(pkg = "dials", fun = "trim_amount")
),
source = "recipe",
component = "step_impute_mean",
component_id = x$id
)
}
#' @export
#' @keywords internal
tunable.step_meanimpute <- tunable.step_impute_mean
|