1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
#' Impute numeric data using the median
#'
#' `step_impute_median` creates a *specification* of a recipe step that will
#' substitute missing values of numeric variables by the training set median of
#' those variables.
#'
#' @inheritParams step_center
#' @param medians A named numeric vector of medians. This is `NULL` until
#' computed by [prep()]. Note that, if the original data are integers,
#' the median will be converted to an integer to maintain the same data type.
#' @template step-return
#' @family imputation steps
#' @export
#' @details `step_impute_median` estimates the variable medians from the data
#' used in the `training` argument of `prep.recipe`. `bake.recipe` then applies
#' the new values to new data sets using these medians.
#'
#' As of `recipes` 0.1.16, this function name changed from
#' `step_medianimpute()` to `step_impute_median()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with
#' columns `terms` (the selectors or variables selected) and `model`
#' (themedian value) is returned.
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data("credit_data", package = "modeldata")
#'
#' ## missing data per column
#' vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
#'
#' set.seed(342)
#' in_training <- sample(1:nrow(credit_data), 2000)
#'
#' credit_tr <- credit_data[in_training, ]
#' credit_te <- credit_data[-in_training, ]
#' missing_examples <- c(14, 394, 565)
#'
#' rec <- recipe(Price ~ ., data = credit_tr)
#'
#' impute_rec <- rec %>%
#' step_impute_median(Income, Assets, Debt)
#'
#' imp_models <- prep(impute_rec, training = credit_tr)
#'
#' imputed_te <- bake(imp_models, new_data = credit_te, everything())
#'
#' credit_te[missing_examples, ]
#' imputed_te[missing_examples, names(credit_te)]
#'
#' tidy(impute_rec, number = 1)
#' tidy(imp_models, number = 1)
step_impute_median <-
function(recipe,
...,
role = NA,
trained = FALSE,
medians = NULL,
skip = FALSE,
id = rand_id("impute_median")) {
add_step(
recipe,
step_impute_median_new(
terms = enquos(...),
role = role,
trained = trained,
medians = medians,
skip = skip,
id = id,
case_weights = NULL
)
)
}
#' @rdname step_impute_median
#' @export
step_medianimpute <-
function(recipe,
...,
role = NA,
trained = FALSE,
medians = NULL,
skip = FALSE,
id = rand_id("impute_median")) {
lifecycle::deprecate_stop(
when = "0.1.16",
what = "recipes::step_medianimpute()",
with = "recipes::step_impute_median()"
)
step_impute_median(
recipe,
...,
role = role,
trained = trained,
medians = medians,
skip = skip,
id = id
)
}
step_impute_median_new <-
function(terms, role, trained, medians, skip, id, case_weights) {
step(
subclass = "impute_median",
terms = terms,
role = role,
trained = trained,
medians = medians,
skip = skip,
id = id,
case_weights = case_weights
)
}
#' @export
prep.step_impute_median <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
medians <- medians(training[, col_names], wts = wts)
medians <- purrr::map2(medians, training[, col_names], cast)
step_impute_median_new(
terms = x$terms,
role = x$role,
trained = TRUE,
medians = medians,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
#' @keywords internal
prep.step_medianimpute <- prep.step_impute_median
#' @export
bake.step_impute_median <- function(object, new_data, ...) {
check_new_data(names(object$medians), object, new_data)
for (i in names(object$medians)) {
if (any(is.na(new_data[[i]]))) {
new_data[[i]] <- vec_cast(new_data[[i]], object$medians[[i]])
}
new_data[is.na(new_data[[i]]), i] <- object$medians[[i]]
}
new_data
}
#' @export
#' @keywords internal
bake.step_medianimpute <- bake.step_impute_median
#' @export
print.step_impute_median <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Median imputation for "
print_step(names(x$medians), x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
#' @export
#' @keywords internal
print.step_medianimpute <- print.step_impute_median
#' @rdname tidy.recipe
#' @export
tidy.step_impute_median <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$medians),
model = vctrs::list_unchop(unname(x$medians), ptype = double())
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, model = na_dbl)
}
res$id <- x$id
res
}
#' @export
#' @keywords internal
tidy.step_medianimpute <- tidy.step_impute_median
|