File: impute_mode.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (222 lines) | stat: -rw-r--r-- 5,871 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#' Impute nominal data using the most common value
#'
#'   `step_impute_mode` creates a *specification* of a
#'  recipe step that will substitute missing values of nominal
#'  variables by the training set mode of those variables.
#'
#' @inheritParams step_center
#' @param modes A named character vector of modes. This is
#'  `NULL` until computed by [prep()].
#' @param ptype A data frame prototype to cast new data sets to. This is
#'  commonly a 0-row slice of the training set.
#' @template step-return
#' @family imputation steps
#' @export
#' @details `step_impute_mode` estimates the variable modes
#'  from the data used in the `training` argument of
#'  `prep.recipe`. `bake.recipe` then applies the new
#'  values to new data sets using these values. If the training set
#'  data has more than one mode, one is selected at random.
#'
#'  As of `recipes` 0.1.16, this function name changed from `step_modeimpute()`
#'    to `step_impute_mode()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected) and `model` (the mode
#' value) is returned.
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data("credit_data", package = "modeldata")
#'
#' ## missing data per column
#' vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
#'
#' set.seed(342)
#' in_training <- sample(1:nrow(credit_data), 2000)
#'
#' credit_tr <- credit_data[in_training, ]
#' credit_te <- credit_data[-in_training, ]
#' missing_examples <- c(14, 394, 565)
#'
#' rec <- recipe(Price ~ ., data = credit_tr)
#'
#' impute_rec <- rec %>%
#'   step_impute_mode(Status, Home, Marital)
#'
#' imp_models <- prep(impute_rec, training = credit_tr)
#'
#' imputed_te <- bake(imp_models, new_data = credit_te, everything())
#'
#' table(credit_te$Home, imputed_te$Home, useNA = "always")
#'
#' tidy(impute_rec, number = 1)
#' tidy(imp_models, number = 1)
step_impute_mode <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           modes = NULL,
           ptype = NULL,
           skip = FALSE,
           id = rand_id("impute_mode")) {
    add_step(
      recipe,
      step_impute_mode_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        modes = modes,
        ptype = ptype,
        skip = skip,
        id = id,
        case_weights = NULL
      )
    )
  }

#' @rdname step_impute_mode
#' @export
step_modeimpute <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           modes = NULL,
           ptype = NULL,
           skip = FALSE,
           id = rand_id("impute_mode")) {
    lifecycle::deprecate_stop(
      when = "0.1.16",
      what = "recipes::step_modeimpute()",
      with = "recipes::step_impute_mode()"
    )
    step_impute_mode(
      recipe,
      ...,
      role = role,
      trained = trained,
      modes = modes,
      ptype = ptype,
      skip = skip,
      id = id
    )
  }

step_impute_mode_new <-
  function(terms, role, trained, modes, ptype, skip, id, case_weights) {
    step(
      subclass = "impute_mode",
      terms = terms,
      role = role,
      trained = trained,
      modes = modes,
      ptype = ptype,
      skip = skip,
      id = id,
      case_weights = case_weights
    )
  }

#' @export
prep.step_impute_mode <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)

  wts <- get_case_weights(info, training)
  were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
  if (isFALSE(were_weights_used)) {
    wts <- NULL
  }

  modes <- vapply(training[, col_names], mode_est, c(mode = ""), wts = wts)
  ptype <- vec_slice(training[, col_names], 0)
  step_impute_mode_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    modes = modes,
    ptype = ptype,
    skip = x$skip,
    id = x$id,
    case_weights = were_weights_used
  )
}

#' @export
#' @keywords internal
prep.step_modeimpute <- prep.step_impute_mode

#' @export
bake.step_impute_mode <- function(object, new_data, ...) {
  check_new_data(names(object$modes), object, new_data)

  for (i in names(object$modes)) {
    if (any(is.na(new_data[, i]))) {
      if (is.null(object$ptype)) {
        rlang::warn(
          paste0(
            "'ptype' was added to `step_impute_mode()` after this recipe was created.\n",
            "Regenerate your recipe to avoid this warning."
          )
        )
      } else {
        new_data[[i]] <- vec_cast(new_data[[i]], object$ptype[[i]])
      }
      mode_val <- cast(object$modes[[i]], new_data[[i]])
      new_data[is.na(new_data[[i]]), i] <- mode_val
    }
  }
  new_data
}

#' @export
#' @keywords internal
bake.step_modeimpute <- bake.step_impute_mode

#' @export
print.step_impute_mode <-
  function(x, width = max(20, options()$width - 30), ...) {
    title <- "Mode imputation for "
    print_step(names(x$modes), x$terms, x$trained, title, width,
               case_weights = x$case_weights)
    invisible(x)
  }

#' @export
#' @keywords internal
print.step_modeimpute <- print.step_impute_mode

mode_est <- function(x, wts = NULL, call = caller_env(2)) {
  if (!is.character(x) & !is.factor(x))
    rlang::abort(
      "The data should be character or factor to compute the mode.",
      call = call
    )
  tab <- weighted_table(x, wts = wts)
  modes <- names(tab)[tab == max(tab)]
  sample(modes, size = 1)
}

#' @rdname tidy.recipe
#' @export
tidy.step_impute_mode <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(
      terms = names(x$modes),
      model = unname(x$modes)
    )
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names, model = na_chr)
  }
  res$id <- x$id
  res
}

#' @export
#' @keywords internal
tidy.step_modeimpute <- tidy.step_impute_mode