1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
#' Impute nominal data using the most common value
#'
#' `step_impute_mode` creates a *specification* of a
#' recipe step that will substitute missing values of nominal
#' variables by the training set mode of those variables.
#'
#' @inheritParams step_center
#' @param modes A named character vector of modes. This is
#' `NULL` until computed by [prep()].
#' @param ptype A data frame prototype to cast new data sets to. This is
#' commonly a 0-row slice of the training set.
#' @template step-return
#' @family imputation steps
#' @export
#' @details `step_impute_mode` estimates the variable modes
#' from the data used in the `training` argument of
#' `prep.recipe`. `bake.recipe` then applies the new
#' values to new data sets using these values. If the training set
#' data has more than one mode, one is selected at random.
#'
#' As of `recipes` 0.1.16, this function name changed from `step_modeimpute()`
#' to `step_impute_mode()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected) and `model` (the mode
#' value) is returned.
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data("credit_data", package = "modeldata")
#'
#' ## missing data per column
#' vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
#'
#' set.seed(342)
#' in_training <- sample(1:nrow(credit_data), 2000)
#'
#' credit_tr <- credit_data[in_training, ]
#' credit_te <- credit_data[-in_training, ]
#' missing_examples <- c(14, 394, 565)
#'
#' rec <- recipe(Price ~ ., data = credit_tr)
#'
#' impute_rec <- rec %>%
#' step_impute_mode(Status, Home, Marital)
#'
#' imp_models <- prep(impute_rec, training = credit_tr)
#'
#' imputed_te <- bake(imp_models, new_data = credit_te, everything())
#'
#' table(credit_te$Home, imputed_te$Home, useNA = "always")
#'
#' tidy(impute_rec, number = 1)
#' tidy(imp_models, number = 1)
step_impute_mode <-
function(recipe,
...,
role = NA,
trained = FALSE,
modes = NULL,
ptype = NULL,
skip = FALSE,
id = rand_id("impute_mode")) {
add_step(
recipe,
step_impute_mode_new(
terms = enquos(...),
role = role,
trained = trained,
modes = modes,
ptype = ptype,
skip = skip,
id = id,
case_weights = NULL
)
)
}
#' @rdname step_impute_mode
#' @export
step_modeimpute <-
function(recipe,
...,
role = NA,
trained = FALSE,
modes = NULL,
ptype = NULL,
skip = FALSE,
id = rand_id("impute_mode")) {
lifecycle::deprecate_stop(
when = "0.1.16",
what = "recipes::step_modeimpute()",
with = "recipes::step_impute_mode()"
)
step_impute_mode(
recipe,
...,
role = role,
trained = trained,
modes = modes,
ptype = ptype,
skip = skip,
id = id
)
}
step_impute_mode_new <-
function(terms, role, trained, modes, ptype, skip, id, case_weights) {
step(
subclass = "impute_mode",
terms = terms,
role = role,
trained = trained,
modes = modes,
ptype = ptype,
skip = skip,
id = id,
case_weights = case_weights
)
}
#' @export
prep.step_impute_mode <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
modes <- vapply(training[, col_names], mode_est, c(mode = ""), wts = wts)
ptype <- vec_slice(training[, col_names], 0)
step_impute_mode_new(
terms = x$terms,
role = x$role,
trained = TRUE,
modes = modes,
ptype = ptype,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
#' @keywords internal
prep.step_modeimpute <- prep.step_impute_mode
#' @export
bake.step_impute_mode <- function(object, new_data, ...) {
check_new_data(names(object$modes), object, new_data)
for (i in names(object$modes)) {
if (any(is.na(new_data[, i]))) {
if (is.null(object$ptype)) {
rlang::warn(
paste0(
"'ptype' was added to `step_impute_mode()` after this recipe was created.\n",
"Regenerate your recipe to avoid this warning."
)
)
} else {
new_data[[i]] <- vec_cast(new_data[[i]], object$ptype[[i]])
}
mode_val <- cast(object$modes[[i]], new_data[[i]])
new_data[is.na(new_data[[i]]), i] <- mode_val
}
}
new_data
}
#' @export
#' @keywords internal
bake.step_modeimpute <- bake.step_impute_mode
#' @export
print.step_impute_mode <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Mode imputation for "
print_step(names(x$modes), x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
#' @export
#' @keywords internal
print.step_modeimpute <- print.step_impute_mode
mode_est <- function(x, wts = NULL, call = caller_env(2)) {
if (!is.character(x) & !is.factor(x))
rlang::abort(
"The data should be character or factor to compute the mode.",
call = call
)
tab <- weighted_table(x, wts = wts)
modes <- names(tab)[tab == max(tab)]
sample(modes, size = 1)
}
#' @rdname tidy.recipe
#' @export
tidy.step_impute_mode <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$modes),
model = unname(x$modes)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, model = na_chr)
}
res$id <- x$id
res
}
#' @export
#' @keywords internal
tidy.step_modeimpute <- tidy.step_impute_mode
|