1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
#' Impute numeric data using a rolling window statistic
#'
#' `step_impute_roll` creates a *specification* of a
#' recipe step that will substitute missing values of numeric
#' variables by the measure of location (e.g. median) within a moving window.
#'
#' @inheritParams step_center
#' @param ... One or more selector functions to choose variables to be imputed;
#' these columns must be non-integer numerics (i.e., double precision).
#' See [selections()] for more details.
#' @param columns A named numeric vector of columns. This is
#' `NULL` until computed by [prep()].
#' @param window The size of the window around a point to be imputed. Should be
#' an odd integer greater than one. See Details below for a discussion of
#' points at the ends of the series.
#' @param statistic A function with a single argument for the data to compute
#' the imputed value. Only complete values will be passed to the function and
#' it should return a double precision value.
#' @template step-return
#' @family imputation steps
#' @family row operation steps
#' @export
#' @details On the tails, the window is shifted towards the ends.
#' For example, for a 5-point window, the windows for the first
#' four points are `1:5`, `1:5`, `1:5`, and then `2:6`.
#'
#' When missing data are in the window, they are not passed to the
#' function. If all of the data in the window are missing, a
#' missing value is returned.
#'
#' The statistics are calculated on the training set values
#' _before_ imputation. This means that if previous data within the
#' window are missing, their imputed values are not included in the
#' window data used for imputation. In other words, each imputation
#' does not know anything about previous imputations in the series
#' prior to the current point.
#'
#' As of `recipes` 0.1.16, this function name changed from `step_rollimpute()`
#' to `step_impute_roll()`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected) and `window`
#' (the window size) is returned.
#'
#' @template case-weights-not-supported
#'
#' @examples
#' library(lubridate)
#'
#' set.seed(145)
#' example_data <-
#' data.frame(
#' day = ymd("2012-06-07") + days(1:12),
#' x1 = round(runif(12), 2),
#' x2 = round(runif(12), 2),
#' x3 = round(runif(12), 2)
#' )
#' example_data$x1[c(1, 5, 6)] <- NA
#' example_data$x2[c(1:4, 10)] <- NA
#'
#' library(recipes)
#' seven_pt <- recipe(~., data = example_data) %>%
#' update_role(day, new_role = "time_index") %>%
#' step_impute_roll(all_numeric_predictors(), window = 7) %>%
#' prep(training = example_data)
#'
#' # The training set:
#' bake(seven_pt, new_data = NULL)
step_impute_roll <-
function(recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
statistic = median,
window = 5,
skip = FALSE,
id = rand_id("impute_roll")) {
if (!is_tune(window) & !is_varying(window)) {
if (window < 3 | window %% 2 != 1) {
rlang::abort("`window` should be an odd integer >= 3")
}
window <- as.integer(floor(window))
}
add_step(
recipe,
step_impute_roll_new(
terms = enquos(...),
role = role,
trained = trained,
columns = columns,
statistic = statistic,
window = window,
skip = skip,
id = id
)
)
}
#' @rdname step_impute_roll
#' @export
step_rollimpute <-
function(recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
statistic = median,
window = 5,
skip = FALSE,
id = rand_id("impute_roll")) {
lifecycle::deprecate_stop(
when = "0.1.16",
what = "recipes::step_rollimpute()",
with = "recipes::step_impute_roll()"
)
step_impute_roll(
recipe,
...,
role = role,
trained = trained,
columns = columns,
statistic = statistic,
window = window,
skip = skip,
id = id
)
}
step_impute_roll_new <-
function(terms, role, trained, columns, statistic, window, skip, id) {
step(
subclass = "impute_roll",
terms = terms,
role = role,
trained = trained,
columns = columns,
statistic = statistic,
window = window,
skip = skip,
id = id
)
}
#' @export
prep.step_impute_roll <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = "double")
step_impute_roll_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
statistic = x$statistic,
window = x$window,
skip = x$skip,
id = x$id
)
}
#' @export
#' @keywords internal
prep.step_rollimpute <- prep.step_impute_roll
get_window_ind <- function(i, n, k) {
sides <- (k - 1) / 2
if (i - sides >= 1 & i + sides <= n) {
return((i - sides):(i + sides))
}
if (i - sides < 1) {
return(1:k)
}
if (i + sides > n) {
return((n - k + 1):n)
}
}
get_rolling_ind <- function(inds, n, k) {
map(inds, get_window_ind, n = n, k = k)
}
window_est <- function(inds, x, statfun) {
x <- x[inds]
x <- x[!is.na(x)]
out <- if (length(x) == 0) {
na_dbl
} else {
statfun(x)
}
if (!is.double(out)) {
out <- as.double(out)
}
out
}
impute_rolling <- function(inds, x, statfun) {
map_dbl(inds, window_est, x = x, statfun = statfun)
}
#' @export
bake.step_impute_roll <- function(object, new_data, ...) {
check_new_data(unname(object$columns), object, new_data)
n <- nrow(new_data)
missing_ind <- lapply(
new_data[, object$columns],
function(x) which(is.na(x))
)
has_missing <- map_lgl(missing_ind, function(x) length(x) > 0)
missing_ind <- missing_ind[has_missing]
roll_ind <- lapply(missing_ind, get_rolling_ind, n = n, k = object$window)
for (i in seq(along.with = roll_ind)) {
imp_var <- names(roll_ind)[i]
estimates <-
impute_rolling(roll_ind[[i]], new_data[[imp_var]], object$statistic)
new_data[missing_ind[[i]], imp_var] <- estimates
}
new_data
}
#' @export
#' @keywords internal
bake.step_rollimpute <- bake.step_impute_roll
#' @export
print.step_impute_roll <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Rolling imputation for "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @export
#' @keywords internal
print.step_rollimpute <- print.step_impute_roll
#' @rdname tidy.recipe
#' @export
tidy.step_impute_roll <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = unname(x$columns), window = unname(x$window))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, window = unname(x$window))
}
res$id <- x$id
res
}
#' @export
#' @keywords internal
tidy.step_rollimpute <- tidy.step_impute_roll
#' @export
tunable.step_impute_roll <- function(x, ...) {
tibble::tibble(
name = c("statistic", "window"),
call_info = list(
list(pkg = "dials", fun = "location_stat"),
list(pkg = "dials", fun = "window")
),
source = "recipe",
component = "step_impute_roll",
component_id = x$id
)
}
#' @export
#' @keywords internal
tunable.step_rollimpute <- tunable.step_impute_roll
|