1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
|
#' Add intercept (or constant) column
#'
#' `step_intercept` creates a *specification* of a recipe step that
#' will add an intercept or constant term in the first column of a data
#' matrix. `step_intercept` has defaults to *predictor* role so
#' that it is by default called in the bake step. Be careful to avoid
#' unintentional transformations when calling steps with
#' `all_predictors`.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param ... Argument ignored; included for consistency with other step
#' specification functions.
#' @param trained A logical to indicate if the quantities for preprocessing
#' have been estimated. Again included only for consistency.
#' @param name Character name for newly added column
#' @param value A numeric constant to fill the intercept column. Defaults to
#' `1L`.
#' @template step-return
#' @export
#'
#' @details
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` (the columns that will be affected) is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#' rec_trans <- recipe(HHV ~ ., data = biomass_tr[, -(1:2)]) %>%
#' step_intercept(value = 2) %>%
#' step_scale(carbon)
#'
#' rec_obj <- prep(rec_trans, training = biomass_tr)
#'
#' with_intercept <- bake(rec_obj, biomass_te)
#' with_intercept
step_intercept <- function(recipe, ..., role = "predictor",
trained = FALSE, name = "intercept",
value = 1L,
skip = FALSE, id = rand_id("intercept")) {
if (length(list(...)) > 0) {
rlang::warn("Selectors are not used for this step.")
}
if (!is.numeric(value)) {
rlang::abort("Intercept value must be numeric.")
}
if (!is.character(name) | length(name) != 1) {
rlang::abort("Intercept/constant column name must be a character value.")
}
add_step(
recipe,
step_intercept_new(
role = role,
trained = trained,
name = name,
value = value,
skip = skip,
id = id
)
)
}
step_intercept_new <-
function(role, trained, name, value, skip, id) {
step(
subclass = "intercept",
role = role,
trained = trained,
name = name,
value = value,
skip = skip,
id = id
)
}
#' @export
prep.step_intercept <- function(x, training, info = NULL, ...) {
x$trained <- TRUE
x
}
#' @export
bake.step_intercept <- function(object, new_data, ...) {
tibble::add_column(new_data, !!object$name := object$value, .before = TRUE)
}
print.step_intercept <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Adding intercept named: "
untrained_terms <- rlang::parse_quos(x$name, rlang::current_env())
print_step(x$name, untrained_terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_intercept <- function(x, ...) {
res <- tibble(value = x$name)
res$id <- x$id
res
}
|