1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
|
#' Inverse Logit Transformation
#'
#' `step_invlogit` creates a *specification* of a recipe
#' step that will transform the data from real values to be between
#' zero and one.
#'
#' @inheritParams step_center
#' @param columns A character string of variable names that will
#' be populated (eventually) by the `terms` argument.
#' @template step-return
#' @family individual transformation steps
#' @export
#' @details The inverse logit transformation takes values on the
#' real line and translates them to be between zero and one using
#' the function `f(x) = 1/(1+exp(-x))`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the columns that will be affected) is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' ilogit_trans <- rec %>%
#' step_center(carbon, hydrogen) %>%
#' step_scale(carbon, hydrogen) %>%
#' step_invlogit(carbon, hydrogen)
#'
#' ilogit_obj <- prep(ilogit_trans, training = biomass_tr)
#'
#' transformed_te <- bake(ilogit_obj, biomass_te)
#' plot(biomass_te$carbon, transformed_te$carbon)
step_invlogit <-
function(recipe, ..., role = NA, trained = FALSE, columns = NULL,
skip = FALSE, id = rand_id("invlogit")) {
add_step(
recipe,
step_invlogit_new(
terms = enquos(...),
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
)
}
step_invlogit_new <-
function(terms, role, trained, columns, skip, id) {
step(
subclass = "invlogit",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_invlogit <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
step_invlogit_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_invlogit <- function(object, new_data, ...) {
check_new_data(names(object$columns), object, new_data)
for (i in seq_along(object$columns)) {
new_data[, object$columns[i]] <-
binomial()$linkinv(unlist(getElement(new_data, object$columns[i]),
use.names = FALSE
))
}
new_data
}
print.step_invlogit <-
function(x, width = max(20, options()$width - 26), ...) {
title <- "Inverse logit on "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_invlogit <- function(x, ...) {
res <- simple_terms(x, ...)
res$id <- x$id
res
}
|