1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#' Radial Basis Function Kernel PCA Signal Extraction
#'
#' `step_kpca_rbf` creates a *specification* of a recipe step that
#' will convert numeric data into one or more principal components
#' using a radial basis function kernel basis expansion.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param sigma A numeric value for the radial basis function parameter.
#' @param res An S4 [kernlab::kpca()] object is stored
#' here once this preprocessing step has be trained by
#' [prep()].
#' @param columns A character string of variable names that will
#' be populated elsewhere.
#' @template step-return
#' @family multivariate transformation steps
#' @export
#' @template kpca-info
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed(c("modeldata", "ggplot2", "kernlab"))
#' library(ggplot2)
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' kpca_trans <- rec %>%
#' step_YeoJohnson(all_numeric_predictors()) %>%
#' step_normalize(all_numeric_predictors()) %>%
#' step_kpca_rbf(all_numeric_predictors())
#'
#' kpca_estimates <- prep(kpca_trans, training = biomass_tr)
#'
#' kpca_te <- bake(kpca_estimates, biomass_te)
#'
#' ggplot(kpca_te, aes(x = kPC1, y = kPC2)) +
#' geom_point() +
#' coord_equal()
#'
#' tidy(kpca_trans, number = 3)
#' tidy(kpca_estimates, number = 3)
step_kpca_rbf <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
res = NULL,
columns = NULL,
sigma = 0.2,
prefix = "kPC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("kpca_rbf")) {
recipes_pkg_check(required_pkgs.step_kpca_rbf())
add_step(
recipe,
step_kpca_rbf_new(
terms = enquos(...),
role = role,
trained = trained,
num_comp = num_comp,
res = res,
columns = columns,
sigma = sigma,
prefix = prefix,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_kpca_rbf_new <-
function(terms, role, trained, num_comp, res, columns, sigma, prefix,
keep_original_cols, skip, id) {
step(
subclass = "kpca_rbf",
terms = terms,
role = role,
trained = trained,
num_comp = num_comp,
res = res,
columns = columns,
sigma = sigma,
prefix = prefix,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
#' @export
prep.step_kpca_rbf <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
if (x$num_comp > 0 && length(col_names) > 0) {
cl <-
rlang::call2(
"kpca",
.ns = "kernlab",
x = rlang::expr(as.matrix(training[, col_names])),
features = x$num_comp,
kernel = "rbfdot",
kpar = list(sigma = x$sigma)
)
kprc <- try(rlang::eval_tidy(cl), silent = TRUE)
if (inherits(kprc, "try-error")) {
rlang::abort(paste0("`step_kpca_rbf` failed with error:\n", as.character(kprc)))
}
} else {
kprc <- NULL
}
step_kpca_rbf_new(
terms = x$terms,
role = x$role,
trained = TRUE,
num_comp = x$num_comp,
sigma = x$sigma,
res = kprc,
columns = col_names,
prefix = x$prefix,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_kpca_rbf <- function(object, new_data, ...) {
uses_dim_red(object)
if (object$num_comp > 0 && length(object$columns) > 0) {
check_new_data(object$columns, object, new_data)
cl <-
rlang::call2(
"predict",
.ns = "kernlab",
object = object$res,
rlang::expr(as.matrix(new_data[, object$columns]))
)
comps <- rlang::eval_tidy(cl)
comps <- comps[, 1:object$num_comp, drop = FALSE]
colnames(comps) <- names0(ncol(comps), object$prefix)
comps <- check_name(comps, new_data, object)
new_data <- bind_cols(new_data, as_tibble(comps))
keep_original_cols <- get_keep_original_cols(object)
if (!keep_original_cols) {
new_data <- new_data[, !(colnames(new_data) %in% object$columns), drop = FALSE]
}
}
new_data
}
print.step_kpca_rbf <- function(x, width = max(20, options()$width - 40), ...) {
title <- "RBF kernel PCA extraction with "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_kpca_rbf <- function(x, ...) {
uses_dim_red(x)
if (is_trained(x)) {
res <- tibble(terms = unname(x$columns))
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names)
}
res$id <- x$id
res
}
#' @export
tunable.step_kpca_rbf <- function(x, ...) {
tibble::tibble(
name = c("num_comp", "sigma"),
call_info = list(
list(pkg = "dials", fun = "num_comp", range = c(1L, 4L)),
list(pkg = "dials", fun = "rbf_sigma")
),
source = "recipe",
component = "step_kpca_rbf",
component_id = x$id
)
}
#' @rdname required_pkgs.recipe
#' @export
required_pkgs.step_kpca_rbf <- function(x, ...) {
c("kernlab")
}
|