1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#' Create a lagged predictor
#'
#' `step_lag` creates a *specification* of a recipe step that
#' will add new columns of lagged data. Lagged data will
#' by default include NA values where the lag was induced.
#' These can be removed with [step_naomit()], or you may
#' specify an alternative filler value with the `default`
#' argument.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param lag A vector of positive integers. Each specified column will be
#' lagged for each value in the vector.
#' @param prefix A prefix for generated column names, default to "lag_".
#' @param columns A character string of variable names that will
#' be populated (eventually) by the `terms` argument.
#' @param default Passed to `dplyr::lag`, determines what fills empty rows
#' left by lagging (defaults to NA).
#' @template step-return
#' @details The step assumes that the data are already _in the proper sequential
#' order_ for lagging.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` (the columns that will be affected) is returned.
#'
#' @template case-weights-not-supported
#'
#' @family row operation steps
#' @export
#' @rdname step_lag
#'
#' @examples
#' n <- 10
#' start <- as.Date("1999/01/01")
#' end <- as.Date("1999/01/10")
#'
#' df <- data.frame(
#' x = runif(n),
#' index = 1:n,
#' day = seq(start, end, by = "day")
#' )
#'
#' recipe(~., data = df) %>%
#' step_lag(index, day, lag = 2:3) %>%
#' prep(df) %>%
#' bake(df)
step_lag <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
lag = 1,
prefix = "lag_",
default = NA,
columns = NULL,
skip = FALSE,
id = rand_id("lag")) {
add_step(
recipe,
step_lag_new(
terms = enquos(...),
role = role,
trained = trained,
lag = lag,
default = default,
prefix = prefix,
columns = columns,
skip = skip,
id = id
)
)
}
step_lag_new <-
function(terms, role, trained, lag, default, prefix, columns, skip, id) {
step(
subclass = "lag",
terms = terms,
role = role,
trained = trained,
lag = lag,
default = default,
prefix = prefix,
columns = columns,
skip = skip,
id = id
)
}
#' @export
prep.step_lag <- function(x, training, info = NULL, ...) {
step_lag_new(
terms = x$terms,
role = x$role,
trained = TRUE,
lag = x$lag,
default = x$default,
prefix = x$prefix,
columns = recipes_eval_select(x$terms, training, info),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_lag <- function(object, new_data, ...) {
check_new_data(names(object$columns), object, new_data)
if (!all(object$lag == as.integer(object$lag))) {
rlang::abort("step_lag requires 'lag' argument to be integer valued.")
}
make_call <- function(col, lag_val) {
call2(
"lag",
x = sym(col),
n = lag_val,
default = object$default,
.ns = "dplyr"
)
}
grid <- tidyr::expand_grid(col = object$columns, lag_val = object$lag)
calls <- purrr::map2(grid$col, grid$lag_val, make_call)
newname <- as.character(glue::glue("{object$prefix}{grid$lag_val}_{grid$col}"))
calls <- check_name(calls, new_data, object, newname, TRUE)
new_data <- mutate(new_data, !!!calls)
new_data
}
print.step_lag <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Lagging "
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_lag <- function(x, ...) {
res <- simple_terms(x, ...)
res$id <- x$id
res
}
|