File: log.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (166 lines) | stat: -rw-r--r-- 4,280 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#' Logarithmic Transformation
#'
#' `step_log` creates a *specification* of a recipe step
#'  that will log transform data.
#'
#' @inheritParams step_center
#' @param base A numeric value for the base.
#' @param offset An optional value to add to the data prior to
#'  logging (to avoid `log(0)`).
#' @param columns A character string of variable names that will
#'  be populated (eventually) by the `terms` argument.
#' @param signed A logical indicating whether to take the signed log.
#'  This is sign(x) * abs(log(x)) when abs(x) => 1 or 0 if abs(x) < 1.
#'  If `TRUE` the `offset` argument will be ignored.
#' @template step-return
#' @family individual transformation steps
#' @export
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the columns that will be affected) and `base`.
#'
#' @template case-weights-not-supported
#'
#' @examples
#' set.seed(313)
#' examples <- matrix(exp(rnorm(40)), ncol = 2)
#' examples <- as.data.frame(examples)
#'
#' rec <- recipe(~ V1 + V2, data = examples)
#'
#' log_trans <- rec %>%
#'   step_log(all_numeric_predictors())
#'
#' log_obj <- prep(log_trans, training = examples)
#'
#' transformed_te <- bake(log_obj, examples)
#' plot(examples$V1, transformed_te$V1)
#'
#' tidy(log_trans, number = 1)
#' tidy(log_obj, number = 1)
#'
#' # using the signed argument with negative values
#'
#' examples2 <- matrix(rnorm(40, sd = 5), ncol = 2)
#' examples2 <- as.data.frame(examples2)
#'
#' recipe(~ V1 + V2, data = examples2) %>%
#'   step_log(all_numeric_predictors()) %>%
#'   prep(training = examples2) %>%
#'   bake(examples2)
#'
#' recipe(~ V1 + V2, data = examples2) %>%
#'   step_log(all_numeric_predictors(), signed = TRUE) %>%
#'   prep(training = examples2) %>%
#'   bake(examples2)
step_log <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           base = exp(1),
           offset = 0,
           columns = NULL,
           skip = FALSE,
           signed = FALSE,
           id = rand_id("log")) {
    add_step(
      recipe,
      step_log_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        base = base,
        offset = offset,
        columns = columns,
        skip = skip,
        signed = signed,
        id = id
      )
    )
  }

step_log_new <-
  function(terms, role, trained, base, offset, columns, skip, signed, id) {
    step(
      subclass = "log",
      terms = terms,
      role = role,
      trained = trained,
      base = base,
      offset = offset,
      columns = columns,
      skip = skip,
      signed = signed,
      id = id
    )
  }

#' @export
prep.step_log <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("double", "integer"))

  step_log_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    base = x$base,
    offset = x$offset,
    columns = col_names,
    skip = x$skip,
    signed = x$signed,
    id = x$id
  )
}

#' @export
bake.step_log <- function(object, new_data, ...) {
  check_new_data(names(object$columns), object, new_data)

  col_names <- object$columns
  # for backward compat
  if (all(names(object) != "offset")) {
    object$offset <- 0
  }

  if (!object$signed) {
    for (i in seq_along(col_names)) {
      new_data[, col_names[i]] <-
        log(new_data[[col_names[i]]] + object$offset, base = object$base)
    }
  } else {
    if (object$offset != 0) {
      rlang::warn("When signed is TRUE, offset will be ignored")
    }
    for (i in seq_along(col_names)) {
      new_data[, col_names[i]] <-
        ifelse(abs(new_data[[col_names[i]]]) < 1,
          0,
          sign(new_data[[col_names[i]]]) *
            log(abs(new_data[[col_names[i]]]), base = object$base)
        )
    }
  }
  new_data
}

print.step_log <-
  function(x, width = max(20, options()$width - 31), ...) {
    msg <- ifelse(x$signed, "Signed log", "Log")
    title <- glue::glue("{msg} transformation on ")
    print_step(x$columns, x$terms, x$trained, title, width)
    invisible(x)
  }

#' @rdname tidy.recipe
#' @export
tidy.step_log <- function(x, ...) {
  out <- simple_terms(x, ...)
  out$base <- x$base
  out$id <- x$id
  out
}