1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
#' Logarithmic Transformation
#'
#' `step_log` creates a *specification* of a recipe step
#' that will log transform data.
#'
#' @inheritParams step_center
#' @param base A numeric value for the base.
#' @param offset An optional value to add to the data prior to
#' logging (to avoid `log(0)`).
#' @param columns A character string of variable names that will
#' be populated (eventually) by the `terms` argument.
#' @param signed A logical indicating whether to take the signed log.
#' This is sign(x) * abs(log(x)) when abs(x) => 1 or 0 if abs(x) < 1.
#' If `TRUE` the `offset` argument will be ignored.
#' @template step-return
#' @family individual transformation steps
#' @export
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the columns that will be affected) and `base`.
#'
#' @template case-weights-not-supported
#'
#' @examples
#' set.seed(313)
#' examples <- matrix(exp(rnorm(40)), ncol = 2)
#' examples <- as.data.frame(examples)
#'
#' rec <- recipe(~ V1 + V2, data = examples)
#'
#' log_trans <- rec %>%
#' step_log(all_numeric_predictors())
#'
#' log_obj <- prep(log_trans, training = examples)
#'
#' transformed_te <- bake(log_obj, examples)
#' plot(examples$V1, transformed_te$V1)
#'
#' tidy(log_trans, number = 1)
#' tidy(log_obj, number = 1)
#'
#' # using the signed argument with negative values
#'
#' examples2 <- matrix(rnorm(40, sd = 5), ncol = 2)
#' examples2 <- as.data.frame(examples2)
#'
#' recipe(~ V1 + V2, data = examples2) %>%
#' step_log(all_numeric_predictors()) %>%
#' prep(training = examples2) %>%
#' bake(examples2)
#'
#' recipe(~ V1 + V2, data = examples2) %>%
#' step_log(all_numeric_predictors(), signed = TRUE) %>%
#' prep(training = examples2) %>%
#' bake(examples2)
step_log <-
function(recipe,
...,
role = NA,
trained = FALSE,
base = exp(1),
offset = 0,
columns = NULL,
skip = FALSE,
signed = FALSE,
id = rand_id("log")) {
add_step(
recipe,
step_log_new(
terms = enquos(...),
role = role,
trained = trained,
base = base,
offset = offset,
columns = columns,
skip = skip,
signed = signed,
id = id
)
)
}
step_log_new <-
function(terms, role, trained, base, offset, columns, skip, signed, id) {
step(
subclass = "log",
terms = terms,
role = role,
trained = trained,
base = base,
offset = offset,
columns = columns,
skip = skip,
signed = signed,
id = id
)
}
#' @export
prep.step_log <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
step_log_new(
terms = x$terms,
role = x$role,
trained = TRUE,
base = x$base,
offset = x$offset,
columns = col_names,
skip = x$skip,
signed = x$signed,
id = x$id
)
}
#' @export
bake.step_log <- function(object, new_data, ...) {
check_new_data(names(object$columns), object, new_data)
col_names <- object$columns
# for backward compat
if (all(names(object) != "offset")) {
object$offset <- 0
}
if (!object$signed) {
for (i in seq_along(col_names)) {
new_data[, col_names[i]] <-
log(new_data[[col_names[i]]] + object$offset, base = object$base)
}
} else {
if (object$offset != 0) {
rlang::warn("When signed is TRUE, offset will be ignored")
}
for (i in seq_along(col_names)) {
new_data[, col_names[i]] <-
ifelse(abs(new_data[[col_names[i]]]) < 1,
0,
sign(new_data[[col_names[i]]]) *
log(abs(new_data[[col_names[i]]]), base = object$base)
)
}
}
new_data
}
print.step_log <-
function(x, width = max(20, options()$width - 31), ...) {
msg <- ifelse(x$signed, "Signed log", "Log")
title <- glue::glue("{msg} transformation on ")
print_step(x$columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_log <- function(x, ...) {
out <- simple_terms(x, ...)
out$base <- x$base
out$id <- x$id
out
}
|