1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
#' Add new variables using dplyr
#'
#' `step_mutate()` creates a *specification* of a recipe step
#' that will add variables using [dplyr::mutate()].
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param ... Name-value pairs of expressions. See [dplyr::mutate()].
#' @param inputs Quosure(s) of `...`.
#' @template step-return
#' @template mutate-leakage
#' @details When an object in the user's global environment is
#' referenced in the expression defining the new variable(s),
#' it is a good idea to use quasiquotation (e.g. `!!`) to embed
#' the value of the object in the expression (to be portable
#' between sessions). See the examples.
#'
#' If a preceding step removes a column that is selected by name in
#' `step_mutate()`, the recipe will error when being estimated with [prep()].
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `values`, which contains the `mutate()` expressions as character
#' strings (and are not reparsable), is returned.
#'
#' @template case-weights-not-supported
#'
#' @family individual transformation steps
#' @family dplyr steps
#' @export
#' @examples
#' rec <-
#' recipe(~., data = iris) %>%
#' step_mutate(
#' dbl_width = Sepal.Width * 2,
#' half_length = Sepal.Length / 2
#' )
#'
#' prepped <- prep(rec, training = iris %>% slice(1:75))
#'
#' library(dplyr)
#'
#' dplyr_train <-
#' iris %>%
#' as_tibble() %>%
#' slice(1:75) %>%
#' mutate(
#' dbl_width = Sepal.Width * 2,
#' half_length = Sepal.Length / 2
#' )
#'
#' rec_train <- bake(prepped, new_data = NULL)
#' all.equal(dplyr_train, rec_train)
#'
#' dplyr_test <-
#' iris %>%
#' as_tibble() %>%
#' slice(76:150) %>%
#' mutate(
#' dbl_width = Sepal.Width * 2,
#' half_length = Sepal.Length / 2
#' )
#' rec_test <- bake(prepped, iris %>% slice(76:150))
#' all.equal(dplyr_test, rec_test)
#'
#' # Embedding objects:
#' const <- 1.414
#'
#' qq_rec <-
#' recipe(~., data = iris) %>%
#' step_mutate(
#' bad_approach = Sepal.Width * const,
#' best_approach = Sepal.Width * !!const
#' ) %>%
#' prep(training = iris)
#'
#' bake(qq_rec, new_data = NULL, contains("appro")) %>% slice(1:4)
#'
#' # The difference:
#' tidy(qq_rec, number = 1)
step_mutate <- function(recipe, ...,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("mutate")) {
inputs <- enquos(...)
add_step(
recipe,
step_mutate_new(
trained = trained,
role = role,
inputs = inputs,
skip = skip,
id = id
)
)
}
step_mutate_new <-
function(role, trained, inputs, skip, id) {
step(
subclass = "mutate",
role = role,
trained = trained,
inputs = inputs,
skip = skip,
id = id
)
}
#' @export
prep.step_mutate <- function(x, training, info = NULL, ...) {
step_mutate_new(
trained = TRUE,
role = x$role,
inputs = x$inputs,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_mutate <- function(object, new_data, ...) {
dplyr::mutate(new_data, !!!object$inputs)
}
print.step_mutate <-
function(x, width = max(20, options()$width - 35), ...) {
title <- "Variable mutation for "
print_step(x$inputs, x$inputs, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_mutate <- function(x, ...) {
inputs <- x$inputs
terms <- names(quos_auto_name(inputs))
value <- map_chr(unname(inputs), as_label)
tibble(
terms = terms,
value = value,
id = rep(x$id, length(x$inputs))
)
}
|