File: mutate.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (151 lines) | stat: -rw-r--r-- 3,691 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#' Add new variables using dplyr
#'
#' `step_mutate()` creates a *specification* of a recipe step
#'  that will add variables using [dplyr::mutate()].
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param ... Name-value pairs of expressions. See [dplyr::mutate()].
#' @param inputs Quosure(s) of `...`.
#' @template step-return
#' @template mutate-leakage
#' @details When an object in the user's global environment is
#'  referenced in the expression defining the new variable(s),
#'  it is a good idea to use quasiquotation (e.g. `!!`) to embed
#'  the value of the object in the expression (to be portable
#'  between sessions). See the examples.
#'
#'  If a preceding step removes a column that is selected by name in
#'  `step_mutate()`, the recipe will error when being estimated with [prep()].
#'
#'  # Tidying
#'
#'  When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#'  `values`, which contains the `mutate()` expressions as character
#'  strings (and are not reparsable), is returned.
#'
#' @template case-weights-not-supported
#'
#' @family individual transformation steps
#' @family dplyr steps
#' @export
#' @examples
#' rec <-
#'   recipe(~., data = iris) %>%
#'   step_mutate(
#'     dbl_width = Sepal.Width * 2,
#'     half_length = Sepal.Length / 2
#'   )
#'
#' prepped <- prep(rec, training = iris %>% slice(1:75))
#'
#' library(dplyr)
#'
#' dplyr_train <-
#'   iris %>%
#'   as_tibble() %>%
#'   slice(1:75) %>%
#'   mutate(
#'     dbl_width = Sepal.Width * 2,
#'     half_length = Sepal.Length / 2
#'   )
#'
#' rec_train <- bake(prepped, new_data = NULL)
#' all.equal(dplyr_train, rec_train)
#'
#' dplyr_test <-
#'   iris %>%
#'   as_tibble() %>%
#'   slice(76:150) %>%
#'   mutate(
#'     dbl_width = Sepal.Width * 2,
#'     half_length = Sepal.Length / 2
#'   )
#' rec_test <- bake(prepped, iris %>% slice(76:150))
#' all.equal(dplyr_test, rec_test)
#'
#' # Embedding objects:
#' const <- 1.414
#'
#' qq_rec <-
#'   recipe(~., data = iris) %>%
#'   step_mutate(
#'     bad_approach = Sepal.Width * const,
#'     best_approach = Sepal.Width * !!const
#'   ) %>%
#'   prep(training = iris)
#'
#' bake(qq_rec, new_data = NULL, contains("appro")) %>% slice(1:4)
#'
#' # The difference:
#' tidy(qq_rec, number = 1)
step_mutate <- function(recipe, ...,
                        role = "predictor",
                        trained = FALSE,
                        inputs = NULL,
                        skip = FALSE,
                        id = rand_id("mutate")) {
  inputs <- enquos(...)

  add_step(
    recipe,
    step_mutate_new(
      trained = trained,
      role = role,
      inputs = inputs,
      skip = skip,
      id = id
    )
  )
}

step_mutate_new <-
  function(role, trained, inputs, skip, id) {
    step(
      subclass = "mutate",
      role = role,
      trained = trained,
      inputs = inputs,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_mutate <- function(x, training, info = NULL, ...) {
  step_mutate_new(
    trained = TRUE,
    role = x$role,
    inputs = x$inputs,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_mutate <- function(object, new_data, ...) {
  dplyr::mutate(new_data, !!!object$inputs)
}


print.step_mutate <-
  function(x, width = max(20, options()$width - 35), ...) {
    title <- "Variable mutation for "
    print_step(x$inputs, x$inputs, x$trained, title, width)
    invisible(x)
  }

#' @rdname tidy.recipe
#' @export
tidy.step_mutate <- function(x, ...) {
  inputs <- x$inputs

  terms <- names(quos_auto_name(inputs))
  value <- map_chr(unname(inputs), as_label)

  tibble(
    terms = terms,
    value = value,
    id = rep(x$id, length(x$inputs))
  )
}