File: newvalues.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (166 lines) | stat: -rw-r--r-- 4,521 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#' Check for New Values
#'
#' `check_new_values` creates a *specification* of a recipe
#'  operation that will check if variables contain new values.
#'
#' @inheritParams check_missing
#' @param ignore_NA A logical that indicates if we should consider missing
#'  values as value or not. Defaults to `TRUE`.
#' @param values A named list with the allowed values.
#'  This is `NULL` until computed by prep.recipe().
#' @template check-return
#' @family checks
#' @export
#' @details This check will break the `bake` function if any of the checked
#'  columns does contain values it did not contain when `prep` was called
#'  on the recipe. If the check passes, nothing is changed to the data.
#'
#'  # Tidying
#'
#'  When you [`tidy()`][tidy.recipe()] this check, a tibble with columns
#'  `terms` (the selectors or variables selected) is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(credit_data, package = "modeldata")
#'
#' # If the test passes, `new_data` is returned unaltered
#' recipe(credit_data) %>%
#'   check_new_values(Home) %>%
#'   prep() %>%
#'   bake(new_data = credit_data)
#'
#' # If `new_data` contains values not in `x` at the [prep()] function,
#' # the [bake()] function will break.
#' \dontrun{
#' recipe(credit_data %>% dplyr::filter(Home != "rent")) %>%
#'   check_new_values(Home) %>%
#'   prep() %>%
#'   bake(new_data = credit_data)
#' }
#'
#' # By default missing values are ignored, so this passes.
#' recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%
#'   check_new_values(Home) %>%
#'   prep() %>%
#'   bake(credit_data)
#'
#' # Use `ignore_NA = FALSE` if you consider missing values  as a value,
#' # that should not occur when not observed in the train set.
#' \dontrun{
#' recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%
#'   check_new_values(Home, ignore_NA = FALSE) %>%
#'   prep() %>%
#'   bake(credit_data)
#' }
check_new_values <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           columns = NULL,
           ignore_NA = TRUE,
           values = NULL,
           skip = FALSE,
           id = rand_id("new_values")) {
    add_check(
      recipe,
      check_new_values_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        columns = columns,
        ignore_NA = ignore_NA,
        values = values,
        skip = skip,
        id = id
      )
    )
  }

check_new_values_new <-
  function(terms, role, trained, columns, skip, id, values, ignore_NA) {
    check(
      subclass = "new_values",
      prefix = "check_",
      terms = terms,
      role = role,
      trained = trained,
      columns = columns,
      skip = skip,
      id = id,
      values = values,
      ignore_NA = ignore_NA
    )
  }

new_values_func <- function(x,
                            allowed_values,
                            colname = "x",
                            ignore_NA = TRUE) {
  new_vals <- setdiff(as.character(x), as.character(allowed_values))
  if (length(new_vals) == 0) {
    return()
  }
  if (all(is.na(new_vals)) && ignore_NA) {
    return()
  }
  if (ignore_NA) new_vals <- new_vals[!is.na(new_vals)]
  rlang::abort(paste0(
    colname,
    " contains the new value(s): ",
    paste(new_vals, collapse = ",")
  ))
}

prep.check_new_values <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)

  values <- lapply(training[, col_names], unique)

  check_new_values_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    columns = col_names,
    skip = x$skip,
    id = x$id,
    values = values,
    ignore_NA = x$ignore_NA
  )
}

bake.check_new_values <- function(object,
                                  new_data,
                                  ...) {
  col_names <- names(object$values)
  for (i in seq_along(col_names)) {
    colname <- col_names[i]
    new_values_func(new_data[[colname]],
      object$values[[colname]],
      colname,
      ignore_NA = object$ignore_NA
    )
  }
  new_data
}

print.check_new_values <-
  function(x, width = max(20, options()$width - 30), ...) {
    title <- "Checking no new_values for "
    print_step(names(x$values), x$terms, x$trained, title, width)
    invisible(x)
  }

#' @rdname tidy.recipe
#' @export
tidy.check_new_values <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(terms = unname(x$columns))
  } else {
    res <- tibble(terms = sel2char(x$terms))
  }
  res$id <- x$id
  res
}