1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
#' Check for New Values
#'
#' `check_new_values` creates a *specification* of a recipe
#' operation that will check if variables contain new values.
#'
#' @inheritParams check_missing
#' @param ignore_NA A logical that indicates if we should consider missing
#' values as value or not. Defaults to `TRUE`.
#' @param values A named list with the allowed values.
#' This is `NULL` until computed by prep.recipe().
#' @template check-return
#' @family checks
#' @export
#' @details This check will break the `bake` function if any of the checked
#' columns does contain values it did not contain when `prep` was called
#' on the recipe. If the check passes, nothing is changed to the data.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this check, a tibble with columns
#' `terms` (the selectors or variables selected) is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(credit_data, package = "modeldata")
#'
#' # If the test passes, `new_data` is returned unaltered
#' recipe(credit_data) %>%
#' check_new_values(Home) %>%
#' prep() %>%
#' bake(new_data = credit_data)
#'
#' # If `new_data` contains values not in `x` at the [prep()] function,
#' # the [bake()] function will break.
#' \dontrun{
#' recipe(credit_data %>% dplyr::filter(Home != "rent")) %>%
#' check_new_values(Home) %>%
#' prep() %>%
#' bake(new_data = credit_data)
#' }
#'
#' # By default missing values are ignored, so this passes.
#' recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%
#' check_new_values(Home) %>%
#' prep() %>%
#' bake(credit_data)
#'
#' # Use `ignore_NA = FALSE` if you consider missing values as a value,
#' # that should not occur when not observed in the train set.
#' \dontrun{
#' recipe(credit_data %>% dplyr::filter(!is.na(Home))) %>%
#' check_new_values(Home, ignore_NA = FALSE) %>%
#' prep() %>%
#' bake(credit_data)
#' }
check_new_values <-
function(recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
ignore_NA = TRUE,
values = NULL,
skip = FALSE,
id = rand_id("new_values")) {
add_check(
recipe,
check_new_values_new(
terms = enquos(...),
role = role,
trained = trained,
columns = columns,
ignore_NA = ignore_NA,
values = values,
skip = skip,
id = id
)
)
}
check_new_values_new <-
function(terms, role, trained, columns, skip, id, values, ignore_NA) {
check(
subclass = "new_values",
prefix = "check_",
terms = terms,
role = role,
trained = trained,
columns = columns,
skip = skip,
id = id,
values = values,
ignore_NA = ignore_NA
)
}
new_values_func <- function(x,
allowed_values,
colname = "x",
ignore_NA = TRUE) {
new_vals <- setdiff(as.character(x), as.character(allowed_values))
if (length(new_vals) == 0) {
return()
}
if (all(is.na(new_vals)) && ignore_NA) {
return()
}
if (ignore_NA) new_vals <- new_vals[!is.na(new_vals)]
rlang::abort(paste0(
colname,
" contains the new value(s): ",
paste(new_vals, collapse = ",")
))
}
prep.check_new_values <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
values <- lapply(training[, col_names], unique)
check_new_values_new(
terms = x$terms,
role = x$role,
trained = TRUE,
columns = col_names,
skip = x$skip,
id = x$id,
values = values,
ignore_NA = x$ignore_NA
)
}
bake.check_new_values <- function(object,
new_data,
...) {
col_names <- names(object$values)
for (i in seq_along(col_names)) {
colname <- col_names[i]
new_values_func(new_data[[colname]],
object$values[[colname]],
colname,
ignore_NA = object$ignore_NA
)
}
new_data
}
print.check_new_values <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Checking no new_values for "
print_step(names(x$values), x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.check_new_values <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = unname(x$columns))
} else {
res <- tibble(terms = sel2char(x$terms))
}
res$id <- x$id
res
}
|