File: nnmf.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (249 lines) | stat: -rw-r--r-- 7,583 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#' Non-Negative Matrix Factorization Signal Extraction
#'
#' @description
#'
#' `step_nnmf` creates a *specification* of a recipe step
#'  that will convert numeric data into one or more non-negative
#'  components.
#'
#' `r lifecycle::badge("deprecated")`
#'
#' Please use [step_nnmf_sparse()] instead of this step function.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param num_run A positive integer for the number of computations runs used
#'  to obtain a consensus projection.
#' @param options A list of options to `nmf()` in the NMF package by way of the
#'  `NNMF()` function in the `dimRed` package. **Note** that the arguments
#'  `data` and `ndim` should not be passed here, and that NMF's parallel
#'  processing is turned off in favor of resample-level parallelization.
#' @param res The `NNMF()` object is stored
#'  here once this preprocessing step has been trained by
#'  [prep()].
#' @param columns A character string of variable names that will
#'  be populated elsewhere.
#' @param prefix A character string that will be the prefix to the
#'  resulting new variables. See notes below.
#' @param seed An integer that will be used to set the seed in isolation
#'  when computing the factorization.
#' @template step-return
#' @family multivariate transformation steps
#' @export
#' @details Non-negative matrix factorization computes latent components that
#'  have non-negative values and take into account that the original data
#'  have non-negative values.
#'
#' The argument `num_comp` controls the number of components that
#'  will be retained (the original variables that are used to derive
#'  the components are removed from the data). The new components
#'  will have names that begin with `prefix` and a sequence of
#'  numbers. The variable names are padded with zeros. For example,
#'  if `num < 10`, their names will be `NNMF1` - `NNMF9`.
#'  If `num = 101`, the names would be `NNMF001` -
#'  `NNMF101`.
#'
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` (the selectors or variables selected) and the number of
#' components is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed(c("modeldata", "ggplot2"))
#' data(biomass, package = "modeldata")
#'
#' # rec <- recipe(HHV ~ ., data = biomass) %>%
#' #   update_role(sample, new_role = "id var") %>%
#' #   update_role(dataset, new_role = "split variable") %>%
#' #   step_nnmf(all_numeric_predictors(), num_comp = 2, seed = 473, num_run = 2) %>%
#' #   prep(training = biomass)
#' #
#' # bake(rec, new_data = NULL)
#' #
#' # library(ggplot2)
#' # bake(rec, new_data = NULL) %>%
#' #  ggplot(aes(x = NNMF2, y = NNMF1, col = HHV)) + geom_point()
step_nnmf <-
  function(recipe,
           ...,
           role = "predictor",
           trained = FALSE,
           num_comp = 2,
           num_run = 30,
           options = list(),
           res = NULL,
           columns = NULL,
           prefix = "NNMF",
           seed = sample.int(10^5, 1),
           keep_original_cols = FALSE,
           skip = FALSE,
           id = rand_id("nnmf")) {
    recipes_pkg_check(required_pkgs.step_nnmf())
    lifecycle::deprecate_warn("0.2.0", "step_nnmf()", "step_nnmf_sparse()")
    add_step(
      recipe,
      step_nnmf_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        num_comp = num_comp,
        num_run = num_run,
        options = options,
        res = res,
        columns = columns,
        prefix = prefix,
        seed = seed,
        keep_original_cols = keep_original_cols,
        skip = skip,
        id = id
      )
    )
  }

step_nnmf_new <-
  function(terms, role, trained, num_comp, num_run, options, res, columns,
           prefix, seed, keep_original_cols, skip, id) {
    step(
      subclass = "nnmf",
      terms = terms,
      role = role,
      trained = trained,
      num_comp = num_comp,
      num_run = num_run,
      options = options,
      res = res,
      columns = columns,
      prefix = prefix,
      seed = seed,
      keep_original_cols = keep_original_cols,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_nnmf <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("double", "integer"))

  if (x$num_comp > 0 && length(col_names) > 0) {
    x$num_comp <- min(x$num_comp, length(col_names))

    nmf_opts <- list(parallel = FALSE, parallel.required = FALSE)

    nnm <- try(
      eval_dimred_call(
        "embed",
        .method = "NNMF",
        .data = dimred_data(training[, col_names, drop = FALSE]),
        ndim = x$num_comp,
        nrun = x$num_run,
        seed = x$seed,
        .mute = c("message", "output"),
        options = x$options,
        .options = nmf_opts
      ),
      silent = TRUE
    )
    if (inherits(nnm, "try-error")) {
      rlang::abort(paste0("`step_nnmf` failed with error:\n", as.character(nnm)))
    }
  } else {
    nnm <- NULL
  }

  step_nnmf_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    num_comp = x$num_comp,
    num_run = x$num_run,
    options = x$options,
    res = nnm,
    columns = col_names,
    prefix = x$prefix,
    seed = x$seed,
    keep_original_cols = get_keep_original_cols(x),
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_nnmf <- function(object, new_data, ...) {

  if (object$num_comp > 0 && length(object$columns) > 0) {
    check_new_data(object$columns, object, new_data)
    nnmf_vars <- rownames(object$res@other.data$w)
    comps <-
      object$res@apply(dimred_data(new_data[, nnmf_vars, drop = FALSE]))@data
    comps <- comps[, 1:object$num_comp, drop = FALSE]
    colnames(comps) <- names0(ncol(comps), object$prefix)
    new_data <- bind_cols(new_data, as_tibble(comps))
    keep_original_cols <- get_keep_original_cols(object)

    if (!keep_original_cols) {
      new_data <- new_data[, !(colnames(new_data) %in% nnmf_vars), drop = FALSE]
    }
  }
  new_data
}


print.step_nnmf <- function(x, width = max(20, options()$width - 29), ...) {
  title <- "Non-negative matrix factorization for "
  print_step(colnames(x$res@org.data), x$terms, x$trained, title, width)
  invisible(x)
}


#' @rdname tidy.recipe
#' @export
tidy.step_nnmf <- function(x, ...) {
  if (is_trained(x)) {
    if (x$num_comp > 0 && length(x$columns) > 0) {
      res <- x$res@other.data$w
      var_nms <- rownames(res)
      res <- tibble::as_tibble(res)
      res$terms <- var_nms
      res <- tidyr::pivot_longer(res,
        cols = c(-terms),
        names_to = "component", values_to = "value"
      )
      res <- res[, c("terms", "value", "component")]
      res <- res[order(res$component, res$terms), ]
    } else {
      res <- tibble(terms = unname(x$columns), value = na_dbl, component = na_dbl)
    }
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(terms = term_names, value = na_dbl, component = x$num_comp)
  }
  res$id <- x$id
  res
}

# ------------------------------------------------------------------------------

#' @export
tunable.step_nnmf <- function(x, ...) {
  tibble::tibble(
    name = c("num_comp", "num_run"),
    call_info = list(
      list(pkg = "dials", fun = "num_comp", range = c(1L, 4L)),
      list(pkg = "dials", fun = "num_run", range = c(1L, 10L))
    ),
    source = "recipe",
    component = "step_nnmf",
    component_id = x$id
  )
}

#' @rdname required_pkgs.recipe
#' @export
required_pkgs.step_nnmf <- function(x, ...) {
  c("dimRed", "NMF")
}