1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
#' Non-Negative Matrix Factorization Signal Extraction with lasso Penalization
#'
#' `step_nnmf_sparse()` creates a *specification* of a recipe step
#' that will convert numeric data into one or more non-negative
#' components.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param penalty A non-negative number used as a penalization factor for the
#' loadings. Values are usually between zero and one.
#' @param options A list of options to `nmf()` in the RcppML package. That
#' package has a separate function `setRcppMLthreads()` that controls the
#' amount of internal parallelization. **Note** that the argument `A`, `k`,
#' `L1`, and `seed` should not be passed here.
#' @param res A matrix of loadings is stored here, along with the names of the
#' original predictors, once this preprocessing step has been trained by
#' [prep()].
#' @param seed An integer that will be used to set the seed in isolation when
#' computing the factorization.
#' @template step-return
#' @family multivariate transformation steps
#' @export
#' @details Non-negative matrix factorization computes latent components that
#' have non-negative values and take into account that the original data have
#' non-negative values.
#'
#' The argument `num_comp` controls the number of components that will be
#' retained (the original variables that are used to derive the components are
#' removed from the data). The new components will have names that begin with
#' `prefix` and a sequence of numbers. The variable names are padded with
#' zeros. For example, if `num < 10`, their names will be `NNMF1` - `NNMF9`. If
#' `num = 101`, the names would be `NNMF001` - `NNMF101`.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` (the selectors or variables selected) and the number of
#' components is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf .Platform$OS.type!= "windows"
#' if (rlang::is_installed(c("modeldata", "RcppML", "ggplot2"))) {
#' library(Matrix)
#' data(biomass, package = "modeldata")
#'
#' rec <- recipe(HHV ~ ., data = biomass) %>%
#' update_role(sample, new_role = "id var") %>%
#' update_role(dataset, new_role = "split variable") %>%
#' step_nnmf_sparse(
#' all_numeric_predictors(),
#' num_comp = 2,
#' seed = 473,
#' penalty = 0.01
#' ) %>%
#' prep(training = biomass)
#'
#' bake(rec, new_data = NULL)
#'
#' library(ggplot2)
#' bake(rec, new_data = NULL) %>%
#' ggplot(aes(x = NNMF2, y = NNMF1, col = HHV)) +
#' geom_point()
#' }
step_nnmf_sparse <-
function(recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 2,
penalty = 0.001,
options = list(),
res = NULL,
prefix = "NNMF",
seed = sample.int(10^5, 1),
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("nnmf_sparse")) {
recipes_pkg_check(required_pkgs.step_nnmf_sparse())
add_step(
recipe,
step_nnmf_sparse_new(
terms = ellipse_check(...),
role = role,
trained = trained,
num_comp = num_comp,
penalty = penalty,
options = options,
res = res,
prefix = prefix,
seed = seed,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
)
}
step_nnmf_sparse_new <-
function(terms, role, trained, num_comp, penalty, options, res,
prefix, seed, keep_original_cols, skip, id) {
step(
subclass = "nnmf_sparse",
terms = terms,
role = role,
trained = trained,
num_comp = num_comp,
penalty = penalty,
options = options,
res = res,
prefix = prefix,
seed = seed,
keep_original_cols = keep_original_cols,
skip = skip,
id = id
)
}
tibble_to_sparse <- function(x, transp = FALSE) {
x <- as.matrix(x)
if (transp) {
x <- t(x)
}
Matrix::Matrix(x, sparse = TRUE)
}
nnmf_pen_call <- function(x) {
opts <-
list(
A = expr(dat),
k = x$num_comp,
L1 = c(x$penalty, x$penalty),
verbose = FALSE,
seed = x$seed,
nonneg = TRUE
)
cl <- rlang::call2("nmf", .ns = "RcppML", !!!opts)
user_opts <- x$opt
cl <- rlang::call_modify(cl, !!!user_opts)
cl
}
#' @export
prep.step_nnmf_sparse <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
if (x$num_comp > 0) {
x$num_comp <- min(x$num_comp, length(col_names))
dat <- tibble_to_sparse(training[, col_names], transp = TRUE)
cl <- nnmf_pen_call(x)
nnm <- try(rlang::eval_tidy(cl), silent = TRUE)
if (inherits(nnm, "try-error")) {
rlang::abort(paste0("`step_nnmf_sparse` failed with error:\n", as.character(nnm)))
} else {
na_w <- sum(is.na(nnm$w))
if (na_w > 0) {
rlang::abort("The NNMF loadings are missing. The penalty may have been to high.")
} else {
nnm <- list(x_vars = col_names, w = nnm$w)
rownames(nnm$w) <- col_names
colnames(nnm$w) <- names0(ncol(nnm$w), x$prefix)
}
}
} else {
nnm <- list(x_vars = col_names, w = NULL)
}
step_nnmf_sparse_new(
terms = x$terms,
role = x$role,
trained = TRUE,
num_comp = x$num_comp,
penalty = x$penalty,
options = x$options,
res = nnm,
prefix = x$prefix,
seed = x$seed,
keep_original_cols = get_keep_original_cols(x),
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_nnmf_sparse <- function(object, new_data, ...) {
check_new_data(object$res$x_vars, object, new_data)
if (object$num_comp > 0) {
proj_data <- as.matrix(new_data[, object$res$x_vars, drop = FALSE])
proj_data <- proj_data %*% object$res$w
colnames(proj_data) <- names0(ncol(proj_data), object$prefix)
new_data <- bind_cols(new_data, as_tibble(proj_data))
keep_original_cols <- get_keep_original_cols(object)
if (!keep_original_cols) {
new_data <- new_data[, !(colnames(new_data) %in% object$res$x_vars), drop = FALSE]
}
}
new_data
}
print.step_nnmf_sparse <- function(x, width = max(20, options()$width - 29), ...) {
if (x$trained) {
if (x$num_comp == 0) {
title <- "No non-negative matrix factorization was extracted from "
} else {
title <- "Non-negative matrix factorization for "
}
columns <- names(x$res$x_vars)
} else {
title <- "Non-negative matrix factorization for "
}
print_step(columns, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @param x A `step_nnmf_sparse` object.
tidy.step_nnmf_sparse <- function(x, ...) {
if (is_trained(x)) {
if (x$num_comp > 0) {
res <- x$res$w
var_nms <- rownames(res)
res <- tibble::as_tibble(res)
res$terms <- var_nms
res <- tidyr::pivot_longer(res,
cols = c(-terms),
names_to = "component", values_to = "value"
)
res <- res[, c("terms", "value", "component")]
res <- res[order(res$component, res$terms), ]
} else {
res <- tibble(terms = x$res$x_vars, value = na_dbl, component = na_chr)
}
} else {
term_names <- sel2char(x$terms)
res <- tibble(terms = term_names, value = na_dbl, component = x$num_comp)
}
res$id <- x$id
res
}
# ------------------------------------------------------------------------------
#' @export
tunable.step_nnmf_sparse <- function(x, ...) {
tibble::tibble(
name = c("num_comp", "penalty"),
call_info = list(
list(pkg = "dials", fun = "num_comp", range = c(1L, 4L)),
list(pkg = "dials", fun = "penalty")
),
source = "recipe",
component = "step_nnmf_sparse",
component_id = x$id
)
}
#' @rdname required_pkgs.recipe
#' @export
required_pkgs.step_nnmf_sparse <- function(x, ...) {
c("Matrix", "RcppML")
}
|