File: normalize.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (192 lines) | stat: -rw-r--r-- 5,407 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#' Center and scale numeric data
#'
#' `step_normalize` creates a *specification* of a recipe
#'  step that will normalize numeric data to have a standard
#'  deviation of one and a mean of zero.
#'
#' @inheritParams step_center
#' @param means A named numeric vector of means. This is `NULL` until computed
#'  by [prep()].
#' @param sds A named numeric vector of standard deviations This is `NULL` until
#'  computed by [prep()].
#' @param na_rm A logical value indicating whether `NA` values should be removed
#'  when computing the standard deviation and mean.
#' @template step-return
#' @family normalization steps
#' @export
#' @details Centering data means that the average of a variable is subtracted
#'  from the data. Scaling data means that the standard deviation of a variable
#'  is divided out of the data. `step_normalize` estimates the variable standard
#'  deviations and means from the data used in the `training` argument of
#'  `prep.recipe`. [`bake.recipe`] then applies the scaling to new data sets using
#'  these estimates.
#'
#'  # Tidying
#'
#'  When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#'  `terms` (the selectors or variables selected), `value` (the standard
#'  deviations and means), and `statistic` for the type of value is
#'  returned.
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#'   HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'   data = biomass_tr
#' )
#'
#' norm_trans <- rec %>%
#'   step_normalize(carbon, hydrogen)
#'
#' norm_obj <- prep(norm_trans, training = biomass_tr)
#'
#' transformed_te <- bake(norm_obj, biomass_te)
#'
#' biomass_te[1:10, names(transformed_te)]
#' transformed_te
#' tidy(norm_trans, number = 1)
#' tidy(norm_obj, number = 1)
#'
#' # To keep the original variables in the output, use `step_mutate_at`:
#' norm_keep_orig <- rec %>%
#'   step_mutate_at(all_numeric_predictors(), fn = list(orig = ~.)) %>%
#'   step_normalize(-contains("orig"), -all_outcomes())
#'
#' keep_orig_obj <- prep(norm_keep_orig, training = biomass_tr)
#' keep_orig_te <- bake(keep_orig_obj, biomass_te)
#' keep_orig_te
step_normalize <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           means = NULL,
           sds = NULL,
           na_rm = TRUE,
           skip = FALSE,
           id = rand_id("normalize")) {
    add_step(
      recipe,
      step_normalize_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        means = means,
        sds = sds,
        na_rm = na_rm,
        skip = skip,
        id = id,
        case_weights = NULL
      )
    )
  }

step_normalize_new <-
  function(terms, role, trained, means, sds, na_rm, skip, id, case_weights) {
    step(
      subclass = "normalize",
      terms = terms,
      role = role,
      trained = trained,
      means = means,
      sds = sds,
      na_rm = na_rm,
      skip = skip,
      id = id,
      case_weights = case_weights
    )
  }

sd_check <- function(x) {
  zero_sd <- which(x < .Machine$double.eps)
  if (length(zero_sd) > 0) {
    glue_cols <- glue::glue_collapse(
      glue::glue("`{names(zero_sd)}`"), sep = ", ", last = " and "
    )
    rlang::warn(
      glue::glue(
        "Column(s) have zero variance so scaling cannot be used: {glue_cols}. ",
        "Consider using `step_zv()` to remove those columns before normalizing"
      )
    )
    x[zero_sd] <- 1
  }
  x
}

#' @export
prep.step_normalize <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("double", "integer"))

  wts <- get_case_weights(info, training)
  were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
  if (isFALSE(were_weights_used)) {
    wts <- NULL
  }

  means <- averages(training[, col_names], wts, na_rm = x$na_rm)
  vars <- variances(training[, col_names], wts, na_rm = x$na_rm)
  sds <- sqrt(vars)
  sds <- sd_check(sds)

  step_normalize_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    means = means,
    sds = sds,
    na_rm = x$na_rm,
    skip = x$skip,
    id = x$id,
    case_weights = were_weights_used
  )
}

#' @export
bake.step_normalize <- function(object, new_data, ...) {
  check_new_data(names(object$means), object, new_data)

  for (column in names(object$means)) {
    mean <- object$means[column]
    sd <- object$sds[column]
    new_data[[column]] <- (new_data[[column]] - mean) / sd
  }
  new_data
}

print.step_normalize <-
  function(x, width = max(20, options()$width - 30), ...) {
    title <- "Centering and scaling for "
    print_step(names(x$sds), x$terms, x$trained, title, width,
               case_weights = x$case_weights)
    invisible(x)
  }


#' @rdname tidy.recipe
#' @export
tidy.step_normalize <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(
      terms = c(names(x$means), names(x$sds)),
      statistic = rep(c("mean", "sd"), each = length(x$sds)),
      value = unname(c(x$means, x$sds))
    )
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(
      terms = term_names,
      statistic = na_chr,
      value = na_dbl
    )
  }
  res$id <- x$id
  res
}