1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
#' Simple Value Assignments for Novel Factor Levels
#'
#' `step_novel` creates a *specification* of a recipe
#' step that will assign a previously unseen factor level to a
#' new value.
#'
#' @inheritParams step_center
#' @param new_level A single character value that will be assigned
#' to new factor levels.
#' @param objects A list of objects that contain the information
#' on factor levels that will be determined by [prep()].
#' @template step-return
#' @family dummy variable and encoding steps
#' @seealso [dummy_names()]
#' @export
#' @details The selected variables are adjusted to have a new
#' level (given by `new_level`) that is placed in the last
#' position. During preparation there will be no data points
#' associated with this new level since all of the data have been
#' seen.
#'
#' Note that if the original columns are character, they will be
#' converted to factors by this step.
#'
#' Missing values will remain missing.
#'
#' If `new_level` is already in the data given to `prep`, an error
#' is thrown.
#'
#' When fitting a model that can deal with new factor levels, consider using
#' [workflows::add_recipe()] with `allow_novel_levels = TRUE` set in
#' [hardhat::default_recipe_blueprint()]. This will allow your model to handle
#' new levels at prediction time, instead of throwing warnings or errors.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the columns that will be affected) and `value` (the factor
#' levels that is used for the new value) is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(Sacramento, package = "modeldata")
#'
#' sacr_tr <- Sacramento[1:800, ]
#' sacr_te <- Sacramento[801:806, ]
#' sacr_te$city[3] <- "beeptown"
#' sacr_te$city[4] <- "boopville"
#'
#' rec <- recipe(~ city + zip, data = sacr_tr)
#'
#' rec <- rec %>%
#' step_novel(city, zip)
#' rec <- prep(rec, training = sacr_tr)
#'
#' processed <- bake(rec, sacr_te)
#' tibble(old = sacr_te$city, new = processed$city)
#'
#' tidy(rec, number = 1)
step_novel <-
function(recipe,
...,
role = NA,
trained = FALSE,
new_level = "new",
objects = NULL,
skip = FALSE,
id = rand_id("novel")) {
add_step(
recipe,
step_novel_new(
terms = enquos(...),
role = role,
trained = trained,
new_level = new_level,
objects = objects,
skip = skip,
id = id
)
)
}
step_novel_new <-
function(terms, role, trained, new_level, objects, skip, id) {
step(
subclass = "novel",
terms = terms,
role = role,
trained = trained,
new_level = new_level,
objects = objects,
skip = skip,
id = id
)
}
get_existing_values <- function(x) {
if (is.character(x)) {
out <- unique(x)
attr(out, "is_ordered") <- FALSE
} else {
if (is.factor(x)) {
out <- levels(x)
attr(out, "is_ordered") <- is.ordered(x)
} else {
rlang::abort("Data should be either character or factor")
}
}
out
}
#' @export
prep.step_novel <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("string", "factor", "ordered"))
# Get existing levels and their factor type (i.e. ordered)
objects <- lapply(training[, col_names], get_existing_values)
# Check to make sure that there are not duplicate levels
level_check <-
map_lgl(objects, function(x, y) y %in% x, y = x$new_level)
if (any(level_check)) {
rlang::abort(
paste0(
"Columns already contain the new level: ",
paste0(names(level_check)[level_check], collapse = ", ")
)
)
}
step_novel_new(
terms = x$terms,
role = x$role,
trained = TRUE,
new_level = x$new_level,
objects = objects,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_novel <- function(object, new_data, ...) {
check_new_data(names(object$objects), object, new_data)
for (i in names(object$objects)) {
new_data[[i]] <- ifelse(
# Preserve NA values by adding them to the list of existing
# possible values
!(new_data[[i]] %in% c(object$object[[i]], NA)),
object$new_level,
as.character(new_data[[i]])
)
new_data[[i]] <-
factor(new_data[[i]],
levels = c(object$object[[i]], object$new_level),
ordered = attributes(object$object[[i]])$is_ordered
)
}
new_data
}
print.step_novel <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Novel factor level assignment for "
print_step(names(x$objects), x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_novel <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$objects),
value = rep(x$new_level, length(x$objects))
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
value = rep(x$new_level, length(term_names))
)
}
res$id <- x$id
res
}
|