File: nzv.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (235 lines) | stat: -rw-r--r-- 6,392 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#' Near-Zero Variance Filter
#'
#' `step_nzv` creates a *specification* of a recipe step
#'  that will potentially remove variables that are highly sparse
#'  and unbalanced.
#'
#' @inheritParams step_center
#' @param freq_cut,unique_cut Numeric parameters for the filtering process. See
#'  the Details section below.
#' @param options A list of options for the filter (see Details
#'  below).
#' @param removals A character string that contains the names of
#'  columns that should be removed. These values are not determined
#'  until [prep()] is called.
#' @template step-return
#' @template filter-steps
#' @family variable filter steps
#' @export
#'
#' @details This step diagnoses predictors that have one unique
#'  value (i.e. are zero variance predictors) or predictors that have
#'  both of the following characteristics:
#' \enumerate{
#'   \item they have very few unique values relative to the number
#'    of samples and
#'   \item the ratio of the frequency of the most common value to
#'    the frequency of the second most common value is large.
#' }
#'
#' For example, an example of near-zero variance predictor is one
#'  that, for 1000 samples, has two distinct values and 999 of them
#'  are a single value.
#'
#' To be flagged, first, the frequency of the most prevalent value
#'  over the second most frequent value (called the "frequency
#'  ratio") must be above `freq_cut`. Secondly, the "percent of
#'  unique values," the number of unique values divided by the total
#'  number of samples (times 100), must also be below
#'  `unique_cut`.
#'
#' In the above example, the frequency ratio is 999 and the unique
#'  value percent is 0.2%.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` (the columns that will be removed) is returned.
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass$sparse <- c(1, rep(0, nrow(biomass) - 1))
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen +
#'   nitrogen + sulfur + sparse,
#' data = biomass_tr
#' )
#'
#' nzv_filter <- rec %>%
#'   step_nzv(all_predictors())
#'
#' filter_obj <- prep(nzv_filter, training = biomass_tr)
#'
#' filtered_te <- bake(filter_obj, biomass_te)
#' any(names(filtered_te) == "sparse")
#'
#' tidy(nzv_filter, number = 1)
#' tidy(filter_obj, number = 1)
step_nzv <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           freq_cut = 95 / 5,
           unique_cut = 10,
           options = list(freq_cut = 95 / 5, unique_cut = 10),
           removals = NULL,
           skip = FALSE,
           id = rand_id("nzv")) {
    exp_list <- list(freq_cut = 95 / 5, unique_cut = 10)
    if (!isTRUE(all.equal(exp_list, options))) {
      freq_cut <- options$freq_cut
      unique_cut <- options$unique_cut
      lifecycle::deprecate_stop(
        "0.1.7",
        "step_nzv(options)",
        details = "Please use the arguments `freq_cut` and `unique_cut` instead."
      )
    }

    add_step(
      recipe,
      step_nzv_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        freq_cut = freq_cut,
        unique_cut = unique_cut,
        options = options,
        removals = removals,
        skip = skip,
        id = id,
        case_weights = NULL
      )
    )
  }

step_nzv_new <-
  function(terms, role, trained, freq_cut, unique_cut, options,
           removals, skip, id, case_weights) {
    step(
      subclass = "nzv",
      terms = terms,
      role = role,
      trained = trained,
      freq_cut = freq_cut,
      unique_cut = unique_cut,
      options = options,
      removals = removals,
      skip = skip,
      id = id,
      case_weights = case_weights
    )
  }

#' @export
prep.step_nzv <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)

  wts <- get_case_weights(info, training)
  were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
  if (isFALSE(were_weights_used)) {
    wts <- NULL
  }

  filter <- nzv(
    x = training[, col_names],
    wts = wts,
    freq_cut = x$freq_cut,
    unique_cut = x$unique_cut
  )

  step_nzv_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    freq_cut = x$freq_cut,
    unique_cut = x$unique_cut,
    options = x$options,
    removals = filter,
    skip = x$skip,
    id = x$id,
    case_weights = were_weights_used
  )
}

#' @export
bake.step_nzv <- function(object, new_data, ...) {
  if (length(object$removals) > 0) {
    new_data <- new_data[, !(colnames(new_data) %in% object$removals)]
  }
  new_data
}

print.step_nzv <-
  function(x, width = max(20, options()$width - 38), ...) {
    if (x$trained) {
      title <- "Sparse, unbalanced variable filter removed "
    } else {
      title <- "Sparse, unbalanced variable filter on "
    }
    print_step(x$removals, x$terms, x$trained, title, width,
               case_weights = x$case_weights)
    invisible(x)
  }

nzv <- function(x,
                wts,
                freq_cut = 95 / 5,
                unique_cut = 10) {
  if (is.null(dim(x))) {
    x <- matrix(x, ncol = 1)
  }

  fr_foo <- function(data) {
    t <- weighted_table(data[!is.na(data)], wts = wts)
    if (length(t) <= 1) {
      return(0)
    }
    w <- which.max(t)

    return(max(t, na.rm = TRUE) / max(t[-w], na.rm = TRUE))
  }

  freq_ratio <- vapply(x, fr_foo, c(ratio = 0))
  uni_foo <- function(data) {
    length(unique(data[!is.na(data)]))
  }
  lunique <- vapply(x, uni_foo, c(num = 0))
  pct_unique <- 100 * lunique / vapply(x, length, c(num = 0))

  zero_func <- function(data) {
    all(is.na(data))
  }
  zero_var <- (lunique == 1) | vapply(x, zero_func, c(zv = TRUE))

  out <-
    which((freq_ratio > freq_cut &
      pct_unique <= unique_cut) | zero_var)
  names(out) <- NULL
  colnames(x)[out]
}

#' @rdname tidy.recipe
#' @export
tidy.step_nzv <- tidy_filter

#' @export
tunable.step_nzv <- function(x, ...) {
  tibble::tibble(
    name = c("freq_cut", "unique_cut"),
    call_info = list(
      list(pkg = "dials", fun = "freq_cut"),
      list(pkg = "dials", fun = "unique_cut")
    ),
    source = "recipe",
    component = "step_nzv",
    component_id = x$id
  )
}