1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
#' Near-Zero Variance Filter
#'
#' `step_nzv` creates a *specification* of a recipe step
#' that will potentially remove variables that are highly sparse
#' and unbalanced.
#'
#' @inheritParams step_center
#' @param freq_cut,unique_cut Numeric parameters for the filtering process. See
#' the Details section below.
#' @param options A list of options for the filter (see Details
#' below).
#' @param removals A character string that contains the names of
#' columns that should be removed. These values are not determined
#' until [prep()] is called.
#' @template step-return
#' @template filter-steps
#' @family variable filter steps
#' @export
#'
#' @details This step diagnoses predictors that have one unique
#' value (i.e. are zero variance predictors) or predictors that have
#' both of the following characteristics:
#' \enumerate{
#' \item they have very few unique values relative to the number
#' of samples and
#' \item the ratio of the frequency of the most common value to
#' the frequency of the second most common value is large.
#' }
#'
#' For example, an example of near-zero variance predictor is one
#' that, for 1000 samples, has two distinct values and 999 of them
#' are a single value.
#'
#' To be flagged, first, the frequency of the most prevalent value
#' over the second most frequent value (called the "frequency
#' ratio") must be above `freq_cut`. Secondly, the "percent of
#' unique values," the number of unique values divided by the total
#' number of samples (times 100), must also be below
#' `unique_cut`.
#'
#' In the above example, the frequency ratio is 999 and the unique
#' value percent is 0.2%.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` (the columns that will be removed) is returned.
#'
#' @template case-weights-unsupervised
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass$sparse <- c(1, rep(0, nrow(biomass) - 1))
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(HHV ~ carbon + hydrogen + oxygen +
#' nitrogen + sulfur + sparse,
#' data = biomass_tr
#' )
#'
#' nzv_filter <- rec %>%
#' step_nzv(all_predictors())
#'
#' filter_obj <- prep(nzv_filter, training = biomass_tr)
#'
#' filtered_te <- bake(filter_obj, biomass_te)
#' any(names(filtered_te) == "sparse")
#'
#' tidy(nzv_filter, number = 1)
#' tidy(filter_obj, number = 1)
step_nzv <-
function(recipe,
...,
role = NA,
trained = FALSE,
freq_cut = 95 / 5,
unique_cut = 10,
options = list(freq_cut = 95 / 5, unique_cut = 10),
removals = NULL,
skip = FALSE,
id = rand_id("nzv")) {
exp_list <- list(freq_cut = 95 / 5, unique_cut = 10)
if (!isTRUE(all.equal(exp_list, options))) {
freq_cut <- options$freq_cut
unique_cut <- options$unique_cut
lifecycle::deprecate_stop(
"0.1.7",
"step_nzv(options)",
details = "Please use the arguments `freq_cut` and `unique_cut` instead."
)
}
add_step(
recipe,
step_nzv_new(
terms = enquos(...),
role = role,
trained = trained,
freq_cut = freq_cut,
unique_cut = unique_cut,
options = options,
removals = removals,
skip = skip,
id = id,
case_weights = NULL
)
)
}
step_nzv_new <-
function(terms, role, trained, freq_cut, unique_cut, options,
removals, skip, id, case_weights) {
step(
subclass = "nzv",
terms = terms,
role = role,
trained = trained,
freq_cut = freq_cut,
unique_cut = unique_cut,
options = options,
removals = removals,
skip = skip,
id = id,
case_weights = case_weights
)
}
#' @export
prep.step_nzv <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
filter <- nzv(
x = training[, col_names],
wts = wts,
freq_cut = x$freq_cut,
unique_cut = x$unique_cut
)
step_nzv_new(
terms = x$terms,
role = x$role,
trained = TRUE,
freq_cut = x$freq_cut,
unique_cut = x$unique_cut,
options = x$options,
removals = filter,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
bake.step_nzv <- function(object, new_data, ...) {
if (length(object$removals) > 0) {
new_data <- new_data[, !(colnames(new_data) %in% object$removals)]
}
new_data
}
print.step_nzv <-
function(x, width = max(20, options()$width - 38), ...) {
if (x$trained) {
title <- "Sparse, unbalanced variable filter removed "
} else {
title <- "Sparse, unbalanced variable filter on "
}
print_step(x$removals, x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
nzv <- function(x,
wts,
freq_cut = 95 / 5,
unique_cut = 10) {
if (is.null(dim(x))) {
x <- matrix(x, ncol = 1)
}
fr_foo <- function(data) {
t <- weighted_table(data[!is.na(data)], wts = wts)
if (length(t) <= 1) {
return(0)
}
w <- which.max(t)
return(max(t, na.rm = TRUE) / max(t[-w], na.rm = TRUE))
}
freq_ratio <- vapply(x, fr_foo, c(ratio = 0))
uni_foo <- function(data) {
length(unique(data[!is.na(data)]))
}
lunique <- vapply(x, uni_foo, c(num = 0))
pct_unique <- 100 * lunique / vapply(x, length, c(num = 0))
zero_func <- function(data) {
all(is.na(data))
}
zero_var <- (lunique == 1) | vapply(x, zero_func, c(zv = TRUE))
out <-
which((freq_ratio > freq_cut &
pct_unique <= unique_cut) | zero_var)
names(out) <- NULL
colnames(x)[out]
}
#' @rdname tidy.recipe
#' @export
tidy.step_nzv <- tidy_filter
#' @export
tunable.step_nzv <- function(x, ...) {
tibble::tibble(
name = c("freq_cut", "unique_cut"),
call_info = list(
list(pkg = "dials", fun = "freq_cut"),
list(pkg = "dials", fun = "unique_cut")
),
source = "recipe",
component = "step_nzv",
component_id = x$id
)
}
|