File: pca.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (359 lines) | stat: -rw-r--r-- 11,178 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#' PCA Signal Extraction
#'
#' `step_pca` creates a *specification* of a recipe step that will convert
#'  numeric data into one or more principal components.
#'
#' @inheritParams step_center
#' @param role For model terms created by this step, what analysis role should
#'  they be assigned? By default, the new columns created by this step from
#'  the original variables will be used as _predictors_ in a model.
#' @param num_comp The number of components to retain as new predictors.
#'  If `num_comp` is greater than the number of columns or the number of
#'  possible components, a smaller value will be used. If `num_comp = 0`
#'  is set then no transformation is done and selected variables will
#'  stay unchanged.
#' @param threshold A fraction of the total variance that should be covered by
#'  the components. For example, `threshold = .75` means that `step_pca` should
#'  generate enough components to capture 75 percent of the variability in the
#'  variables. Note: using this argument will override and reset any value given
#'  to `num_comp`.
#' @param options A list of options to the default method for
#'  [stats::prcomp()]. Argument defaults are set to `retx = FALSE`, `center =
#'  FALSE`, `scale. = FALSE`, and `tol = NULL`. **Note** that the argument `x`
#'  should not be passed here (or at all).
#' @param res The [stats::prcomp.default()] object is stored here once this
#'  preprocessing step has be trained by [prep()].
#' @param columns A character string of variable names that will
#'  be populated elsewhere.
#' @param prefix A character string for the prefix of the resulting new
#'  variables. See notes below.
#' @param keep_original_cols A logical to keep the original variables in the
#'  output. Defaults to `FALSE`.
#' @template step-return
#' @family multivariate transformation steps
#' @export
#' @details
#' Principal component analysis (PCA) is a transformation of a
#'  group of variables that produces a new set of artificial
#'  features or components. These components are designed to capture
#'  the maximum amount of information (i.e. variance) in the
#'  original variables. Also, the components are statistically
#'  independent from one another. This means that they can be used
#'  to combat large inter-variables correlations in a data set.
#'
#' It is advisable to standardize the variables prior to running
#'  PCA. Here, each variable will be centered and scaled prior to
#'  the PCA calculation. This can be changed using the
#'  `options` argument or by using [step_center()]
#'  and [step_scale()].
#'
#' The argument `num_comp` controls the number of components that
#'  will be retained (the original variables that are used to derive
#'  the components are removed from the data). The new components
#'  will have names that begin with `prefix` and a sequence of
#'  numbers. The variable names are padded with zeros. For example,
#'  if `num_comp < 10`, their names will be `PC1` - `PC9`.
#'  If `num_comp = 101`, the names would be `PC001` -
#'  `PC101`.
#'
#' Alternatively, `threshold` can be used to determine the
#'  number of components that are required to capture a specified
#'  fraction of the total variance in the variables.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, use either `type = "coef"`
#' for the variable loadings per component or `type = "variance"` for how
#' much variance each component accounts for.
#'
#' @template case-weights-unsupervised
#'
#' @references Jolliffe, I. T. (2010). *Principal Component
#'  Analysis*. Springer.
#'
#' @examples
#' rec <- recipe(~., data = USArrests)
#' pca_trans <- rec %>%
#'   step_normalize(all_numeric()) %>%
#'   step_pca(all_numeric(), num_comp = 3)
#' pca_estimates <- prep(pca_trans, training = USArrests)
#' pca_data <- bake(pca_estimates, USArrests)
#'
#' rng <- extendrange(c(pca_data$PC1, pca_data$PC2))
#' plot(pca_data$PC1, pca_data$PC2,
#'   xlim = rng, ylim = rng
#' )
#'
#' with_thresh <- rec %>%
#'   step_normalize(all_numeric()) %>%
#'   step_pca(all_numeric(), threshold = .99)
#' with_thresh <- prep(with_thresh, training = USArrests)
#' bake(with_thresh, USArrests)
#'
#' tidy(pca_trans, number = 2)
#' tidy(pca_estimates, number = 2)
step_pca <- function(recipe,
                     ...,
                     role = "predictor",
                     trained = FALSE,
                     num_comp = 5,
                     threshold = NA,
                     options = list(),
                     res = NULL,
                     columns = NULL,
                     prefix = "PC",
                     keep_original_cols = FALSE,
                     skip = FALSE,
                     id = rand_id("pca")) {
  if (!is_tune(threshold) & !is_varying(threshold)) {
    if (!is.na(threshold) && (threshold > 1 | threshold <= 0)) {
      rlang::abort("`threshold` should be on (0, 1].")
    }
  }

  add_step(
    recipe,
    step_pca_new(
      terms = enquos(...),
      role = role,
      trained = trained,
      num_comp = num_comp,
      threshold = threshold,
      options = options,
      res = res,
      columns = columns,
      prefix = prefix,
      keep_original_cols = keep_original_cols,
      skip = skip,
      id = id,
      case_weights = NULL
    )
  )
}

step_pca_new <-
  function(terms, role, trained, num_comp, threshold, options, res, columns,
           prefix, keep_original_cols, skip, id, case_weights) {
    step(
      subclass = "pca",
      terms = terms,
      role = role,
      trained = trained,
      num_comp = num_comp,
      threshold = threshold,
      options = options,
      res = res,
      columns = columns,
      prefix = prefix,
      keep_original_cols = keep_original_cols,
      skip = skip,
      id = id,
      case_weights = case_weights
    )
  }

#' @export
prep.step_pca <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("double", "integer"))

  wts <- get_case_weights(info, training)
  were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
  if (isFALSE(were_weights_used)) {
    wts <- NULL
  }

  if (x$num_comp > 0 && length(col_names) > 0) {
    if (is.null(wts)) {
      prc_call <-
        expr(prcomp(
          retx = FALSE,
          center = FALSE,
          scale. = FALSE,
          tol = NULL
        ))
      if (length(x$options) > 0) {
        prc_call <- rlang::call_modify(prc_call, !!!x$options)
      }

      prc_call$x <- expr(training[, col_names, drop = FALSE])
      prc_obj <- eval(prc_call)
      ## decide on removing prc elements that aren't used in new projections
      ## e.g. `sdev` etc.
    } else {
      prc_obj <- pca_wts(training[, col_names, drop = FALSE], wts = wts)
    }

    x$num_comp <- min(x$num_comp, length(col_names))
    if (!is.na(x$threshold)) {
      total_var <- sum(prc_obj$sdev^2)
      num_comp <-
        which.max(cumsum(prc_obj$sdev^2 / total_var) >= x$threshold)
      if (length(num_comp) == 0) {
        num_comp <- length(prc_obj$sdev)
      }
      x$num_comp <- num_comp
    }

  } else {
    prc_obj <- NULL
  }

  step_pca_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    num_comp = x$num_comp,
    threshold = x$threshold,
    options = x$options,
    res = prc_obj,
    columns = col_names,
    prefix = x$prefix,
    keep_original_cols = get_keep_original_cols(x),
    skip = x$skip,
    id = x$id,
    case_weights = were_weights_used
  )
}

#' @export
bake.step_pca <- function(object, new_data, ...) {
  if (is.null(object$columns)) {
    object$columns <- stats::setNames(nm = rownames(object$res$rotation))
  }

  if (length(object$columns) > 0 && !all(is.na(object$res$rotation))) {
    check_new_data(object$columns, object, new_data)

    pca_vars <- rownames(object$res$rotation)
    comps <- scale(new_data[, pca_vars], object$res$center, object$res$scale) %*%
      object$res$rotation
    comps <- comps[, 1:object$num_comp, drop = FALSE]
    comps <- check_name(comps, new_data, object)
    new_data <- bind_cols(new_data, as_tibble(comps))
    keep_original_cols <- get_keep_original_cols(object)

    if (!keep_original_cols) {
      new_data <- new_data[, !(colnames(new_data) %in% pca_vars), drop = FALSE]
    }
  }
  new_data
}

print.step_pca <-
  function(x, width = max(20, options()$width - 29), ...) {
    if (x$trained) {
      if (is.null(x$columns)) {
        x$columns <- stats::setNames(nm = rownames(x$res$rotation))
      }

      if (length(x$columns) == 0 || all(is.na(x$res$rotation))) {
        title <- "No PCA components were extracted from "
        columns <- names(x$columns)
      } else {
        title <- glue::glue("PCA extraction with ")
        columns <- rownames(x$res$rotation)
      }
    } else {
      title <- "PCA extraction with "
    }
    print_step(columns, x$terms, x$trained, title, width,
               case_weights = x$case_weights)
    invisible(x)
  }

pca_coefs <- function(x) {
  if (x$num_comp > 0 && length(x$columns) > 0) {
    rot <- as.data.frame(x$res$rotation)
    npc <- ncol(rot)
    res <- utils::stack(rot)
    colnames(res) <- c("value", "component")
    res$component <- as.character(res$component)
    res$terms <- rep(unname(x$columns), npc)
    res <- as_tibble(res)[, c("terms", "value", "component")]
  } else {
    res <- tibble::tibble(
      terms = unname(x$columns), value = rlang::na_dbl,
      component = rlang::na_chr
    )
  }
  res
}

pca_variances <- function(x) {
  if (x$num_comp > 0 && length(x$columns) > 0) {
    variances <- x$res$sdev^2
    p <- length(variances)
    tot <- sum(variances)
    y <- c(
      variances,
      cumsum(variances),
      variances / tot * 100,
      cumsum(variances) / tot * 100
    )
    x <-
      rep(
        c(
          "variance",
          "cumulative variance",
          "percent variance",
          "cumulative percent variance"
        ),
        each = p
      )

    res <- tibble::tibble(
      terms = x,
      value = y,
      component = rep(1:p, 4)
    )
  } else {
    res <- tibble::tibble(
      terms = unname(x$columns),
      value = rep(rlang::na_dbl, length(x$columns)),
      component = rep(rlang::na_chr, length(x$columns))
    )
  }
  res
}



#' @rdname tidy.recipe
#' @param type For `step_pca`, either `"coef"` (for the variable loadings per
#' component) or `"variance"` (how much variance does each component
#' account for).
#' @export
tidy.step_pca <- function(x, type = "coef", ...) {
  if (!is_trained(x)) {
    term_names <- sel2char(x$terms)
    res <- tibble(
      terms = term_names,
      value = na_dbl,
      component = na_chr
    )
  } else {
    type <- match.arg(type, c("coef", "variance"))
    if (type == "coef") {
      res <- pca_coefs(x)
    } else {
      res <- pca_variances(x)
    }
  }
  res$id <- x$id
  res
}

#' @export
tunable.step_pca <- function(x, ...) {
  tibble::tibble(
    name = c("num_comp", "threshold"),
    call_info = list(
      list(pkg = "dials", fun = "num_comp", range = c(1L, 4L)),
      list(pkg = "dials", fun = "threshold")
    ),
    source = "recipe",
    component = "step_pca",
    component_id = x$id
  )
}