1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
#' Generalized Bernstein Polynomial Basis
#'
#' `step_poly_bernstein` creates a *specification* of a recipe
#' step that creates Bernstein polynomial features.
#'
#' @inheritParams step_spline_b
#' @param degree The degrees of the polynomial. As the degrees for a polynomial
#' increase, more flexible and complex curves can be generated.
#' @param options A list of options for [splines2::bernsteinPoly()]
#' which should not include `x` or `degree`.
#' @return An object with classes `"step_poly_bernstein"` and `"step"`.
#' @export
#' @details
#'
#' Polynomial transformations take a numeric column and create multiple features
#' that, when used in a model, can estimate nonlinear trends between the column
#' and some outcome. The degrees of freedom determines how many new features
#' are added to the data.
#'
#' If the spline expansion fails for a selected column, the step will
#' remove that column's results (but will retain the original data). Use the
#' `tidy()` method to determine which columns were used.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` (the columns that will be affected) is returned.
#'
#' @examplesIf rlang::is_installed(c("modeldata", "ggplot2"))
#' library(tidyr)
#' library(dplyr)
#'
#' library(ggplot2)
#' data(ames, package = "modeldata")
#'
#' spline_rec <- recipe(Sale_Price ~ Longitude, data = ames) %>%
#' step_poly_bernstein(Longitude, degree = 6, keep_original_cols = TRUE) %>%
#' prep()
#'
#' tidy(spline_rec, number = 1)
#'
#' # Show where each feature is active
#' spline_rec %>%
#' bake(new_data = NULL,-Sale_Price) %>%
#' pivot_longer(c(starts_with("Longitude_")), names_to = "feature", values_to = "value") %>%
#' mutate(feature = gsub("Longitude_", "feature ", feature)) %>%
#' filter(value > 0) %>%
#' ggplot(aes(x = Longitude, y = value)) +
#' geom_line() +
#' facet_wrap(~ feature)
#' @template case-weights-not-supported
#' @seealso [splines2::bernsteinPoly()]
step_poly_bernstein <-
function(recipe,
...,
role = NA,
trained = FALSE,
degree = 10,
complete_set = FALSE,
options = NULL,
keep_original_cols = FALSE,
results = NULL,
skip = FALSE,
id = rand_id("poly_bernstein")) {
recipes_pkg_check(required_pkgs.step_poly_bernstein())
add_step(
recipe,
step_poly_bernstein_new(
terms = enquos(...),
trained = trained,
role = role,
degree = degree,
complete_set = complete_set,
options = options,
keep_original_cols = keep_original_cols,
results = results,
skip = skip,
id = id
)
)
}
step_poly_bernstein_new <-
function(terms, trained, role, degree, complete_set, options, keep_original_cols,
results, na_rm, skip, id) {
step(
subclass = "poly_bernstein",
terms = terms,
role = role,
trained = trained,
degree = degree,
complete_set = complete_set,
options = options,
keep_original_cols = keep_original_cols,
results = results,
skip = skip,
id = id
)
}
# ------------------------------------------------------------------------------
prep.step_poly_bernstein <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
x$options <- c(x$options, degree = x$degree)
res <-
purrr::map2(
training[, col_names],
col_names,
~ spline2_create(
.x,
nm = .y,
.fn = "bernsteinPoly",
df = NULL,
complete_set = x$complete_set,
fn_opts = x$options
)
)
# check for errors
bas_res <- purrr::map_lgl(res, is.null)
res <- res[!bas_res]
col_names <- col_names[!bas_res]
names(res) <- col_names
step_poly_bernstein_new(
terms = x$terms,
role = x$role,
trained = TRUE,
degree = x$degree,
complete_set = x$complete_set,
options = x$options,
keep_original_cols = x$keep_original_cols,
results = res,
skip = x$skip,
id = x$id
)
}
bake.step_poly_bernstein <- function(object, new_data, ...) {
orig_names <- names(object$results)
if (length(orig_names) > 0) {
new_cols <- purrr::map2_dfc(object$results, new_data[, orig_names], spline2_apply)
new_data <- bind_cols(new_data, new_cols)
keep_original_cols <- get_keep_original_cols(object)
if (!keep_original_cols) {
new_data <- new_data[, !(colnames(new_data) %in% orig_names), drop = FALSE]
}
}
as_tibble(new_data)
}
# ------------------------------------------------------------------------------
print.step_poly_bernstein <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Bernstein polynomial expansion "
cols_used <- names(x$results)
if (length(cols_used) == 0) {
cols_used <- "<none>"
}
print_step(cols_used, x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_poly_bernstein <- function(x, ...) {
if (is_trained(x)) {
terms <- names(x$results)
if (length(terms) == 0) {
terms <- "<none>"
}
} else {
terms <- sel2char(x$terms)
}
tibble(terms = terms, id = x$id)
}
# ------------------------------------------------------------------------------
#' @rdname required_pkgs.recipe
#' @export
required_pkgs.step_poly_bernstein <- function(x, ...) {
c("splines2")
}
# ------------------------------------------------------------------------------
#' @export
tunable.step_poly_bernstein <- function(x, ...) {
tibble::tibble(
name = c("degree"),
call_info = list(
list(pkg = "dials", fun = "degree_int", range = c(1L, 15L))
),
source = "recipe",
component = "step_poly_bernstein",
component_id = x$id
)
}
|