File: range.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (167 lines) | stat: -rw-r--r-- 4,429 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#' Scaling Numeric Data to a Specific Range
#'
#' `step_range` creates a *specification* of a recipe
#'  step that will normalize numeric data to be within a pre-defined
#'  range of values.
#'
#' @inheritParams step_center
#' @param min A single numeric value for the smallest value in the
#'  range.
#' @param max A single numeric value for the largest value in the
#'  range.
#' @param clipping A single logical value for determining whether
#'  application of transformation onto new data should be forced
#'  to be inside `min` and `max`. Defaults to TRUE.
#' @param ranges A character vector of variables that will be
#'  normalized. Note that this is ignored until the values are
#'  determined by [prep()]. Setting this value will
#'  be ineffective.
#' @template step-return
#' @family normalization steps
#' @export
#' @details When a new data point is outside of the ranges seen in
#'  the training set, the new values are truncated at `min` or
#'  `max`.
#'
#'  # Tidying
#'
#'  When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#'  `terms` (the selectors or variables selected), `min`, and `max` is
#'  returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#'   HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'   data = biomass_tr
#' )
#'
#' ranged_trans <- rec %>%
#'   step_range(carbon, hydrogen)
#'
#' ranged_obj <- prep(ranged_trans, training = biomass_tr)
#'
#' transformed_te <- bake(ranged_obj, biomass_te)
#'
#' biomass_te[1:10, names(transformed_te)]
#' transformed_te
#'
#' tidy(ranged_trans, number = 1)
#' tidy(ranged_obj, number = 1)
step_range <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           min = 0,
           max = 1,
           clipping = TRUE,
           ranges = NULL,
           skip = FALSE,
           id = rand_id("range")) {
    add_step(
      recipe,
      step_range_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        min = min,
        max = max,
        clipping = clipping,
        ranges = ranges,
        skip = skip,
        id = id
      )
    )
  }

step_range_new <-
  function(terms, role, trained, min, max, clipping, ranges, skip, id) {
    step(
      subclass = "range",
      terms = terms,
      role = role,
      trained = trained,
      min = min,
      max = max,
      clipping = clipping,
      ranges = ranges,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_range <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("double", "integer"))

  mins <-
    vapply(training[, col_names], min, c(min = 0), na.rm = TRUE)
  maxs <-
    vapply(training[, col_names], max, c(max = 0), na.rm = TRUE)
  step_range_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    min = x$min,
    max = x$max,
    clipping = x$clipping,
    ranges = rbind(mins, maxs),
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_range <- function(object, new_data, ...) {
  check_new_data(colnames(object$ranges), object, new_data)

  for (column in colnames(object$ranges)) {
    min <- object$ranges["mins", column]
    max <- object$ranges["maxs", column]

    new_data[[column]] <- (new_data[[column]] - min) *
      (object$max - object$min) / (max - min) + object$min

    if (object$clipping) {
      new_data[[column]] <- pmax(new_data[[column]], object$min)
      new_data[[column]] <- pmin(new_data[[column]], object$max)
    }
  }
  new_data
}

print.step_range <-
  function(x, width = max(20, options()$width - 30), ...) {
    title <- glue::glue("Range scaling to [{x$min},{x$max}] for ")
    print_step(colnames(x$ranges), x$terms, x$trained, title, width)
    invisible(x)
  }

#' @rdname tidy.recipe
#' @export
tidy.step_range <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(
      terms = colnames(x$ranges) %||% character(),
      min = unname(x$ranges["mins", ]),
      max = unname(x$ranges["maxs", ])
    )
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(
      terms = term_names,
      min = na_dbl,
      max = na_dbl
    )
  }
  res$id <- x$id
  res
}