1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
#' Check Range Consistency
#'
#' `check_range` creates a *specification* of a recipe
#' check that will check if the range of a numeric
#' variable changed in the new data.
#'
#' @inheritParams check_missing
#' @param slack_prop The allowed slack as a proportion of the range
#' of the variable in the train set.
#' @param warn If `TRUE` the check will throw a warning instead
#' of an error when failing.
#' @param lower A named numeric vector of minimum values in the train set.
#' This is `NULL` until computed by [prep()].
#' @param upper A named numeric vector of maximum values in the train set.
#' This is `NULL` until computed by [prep()].
#' @template check-return
#' @family checks
#' @export
#' @details
#' The amount of slack that is allowed is determined by the
#' `slack_prop`. This is a numeric of length one or two. If
#' of length one, the same proportion will be used at both ends
#' of the train set range. If of length two, its first value
#' is used to compute the allowed slack at the lower end,
#' the second to compute the allowed slack at the upper end.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this check, a tibble with columns
#' `terms` (the selectors or variables selected) and `value` (the means)
#' is returned.
#'
#' @examples
#' slack_df <- data_frame(x = 0:100)
#' slack_new_data <- data_frame(x = -10:110)
#'
#' # this will fail the check both ends
#' \dontrun{
#' recipe(slack_df) %>%
#' check_range(x) %>%
#' prep() %>%
#' bake(slack_new_data)
#' }
#'
#' # this will fail the check only at the upper end
#' \dontrun{
#' recipe(slack_df) %>%
#' check_range(x, slack_prop = c(0.1, 0.05)) %>%
#' prep() %>%
#' bake(slack_new_data)
#' }
#'
#' # give a warning instead of an error
#' \dontrun{
#' recipe(slack_df) %>%
#' check_range(x, warn = TRUE) %>%
#' prep() %>%
#' bake(slack_new_data)
#' }
check_range <-
function(recipe,
...,
role = NA,
skip = FALSE,
trained = FALSE,
slack_prop = 0.05,
warn = FALSE,
lower = NULL,
upper = NULL,
id = rand_id("range_check_")) {
add_check(
recipe,
check_range_new(
terms = enquos(...),
role = role,
skip = skip,
trained = trained,
warn = warn,
lower = lower,
upper = upper,
slack_prop = slack_prop,
id = id
)
)
}
## Initializes a new object
check_range_new <-
function(terms, role, skip, trained, slack_prop, warn, lower, upper, id) {
check(
subclass = "range",
terms = terms,
role = role,
skip = skip,
trained = trained,
warn = warn,
lower = lower,
upper = upper,
slack_prop = slack_prop,
id = id
)
}
prep.check_range <- function(x,
training,
info = NULL,
...) {
col_names <- recipes_eval_select(x$terms, training, info)
## TODO add informative error for nonnumerics
lower_vals <- vapply(training[, col_names], min, c(min = 1),
na.rm = TRUE
)
upper_vals <- vapply(training[, col_names], max, c(max = 1),
na.rm = TRUE
)
check_range_new(
terms = x$terms,
role = x$role,
trained = TRUE,
skip = x$skip,
warn = x$warn,
lower = lower_vals,
upper = upper_vals,
slack_prop = x$slack_prop,
id = x$id
)
}
range_check_func <- function(x,
lower,
upper,
slack_prop = 0.05,
warn = FALSE,
colname = "x") {
stopifnot(
is.numeric(slack_prop),
is.numeric(x)
)
min_x <- min(x)
max_x <- max(x)
msg <- NULL
if (length(slack_prop) == 1) {
lower_allowed <- lower - ((upper - lower) * slack_prop)
upper_allowed <- upper + ((upper - lower) * slack_prop)
} else if (length(slack_prop) == 2) {
lower_allowed <- lower - ((upper - lower) * slack_prop[1])
upper_allowed <- upper + ((upper - lower) * slack_prop[2])
} else {
rlang::abort("slack_prop should be of length 1 or of length 2")
}
if (min_x < lower_allowed & max_x > upper_allowed) {
msg <- paste0(
"min ", colname, " is ", min_x, ", lower bound is ",
lower_allowed, ", max x is ", max_x, ", upper bound is ",
upper_allowed
)
} else if (min_x < lower_allowed) {
msg <- paste0(
"min ", colname, " is ", min_x, ", lower bound is ",
lower_allowed
)
} else if (max_x > upper_allowed) {
msg <- paste0(
"max ", colname, " is ", max_x, ", upper bound is ",
upper_allowed
)
}
if (warn & !is.null(msg)) {
rlang::warn(msg)
} else if (!is.null(msg)) {
rlang::abort(msg)
}
}
bake.check_range <- function(object,
new_data,
...) {
col_names <- names(object$lower)
for (i in seq_along(col_names)) {
colname <- col_names[i]
range_check_func(
new_data[[colname]],
object$lower[colname],
object$upper[colname],
object$slack_prop,
object$warn,
colname
)
}
new_data
}
print.check_range <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Checking range of "
print_step(names(x$lower), x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.check_range <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(terms = names(x$lower))
} else {
res <- tibble(terms = sel2char(x$terms))
}
res$id <- x$id
res
}
|