1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
|
#' Create a recipe for preprocessing data
#'
#' A recipe is a description of the steps to be applied to a data set in
#' order to prepare it for data analysis.
#'
#' @aliases recipe recipe.default recipe.formula
#' @export
recipe <- function(x, ...) {
UseMethod("recipe")
}
#' @rdname recipe
#' @export
recipe.default <- function(x, ...) {
rlang::abort("`x` should be a data frame, matrix, or tibble")
}
#' @rdname recipe
#' @param vars A character string of column names corresponding to variables
#' that will be used in any context (see below)
#' @param roles A character string (the same length of `vars`) that
#' describes a single role that the variable will take. This value could be
#' anything but common roles are `"outcome"`, `"predictor"`,
#' `"case_weight"`, or `"ID"`
#' @param ... Further arguments passed to or from other methods (not currently
#' used).
#' @param formula A model formula. No in-line functions should be used here
#' (e.g. `log(x)`, `x:y`, etc.) and minus signs are not allowed. These types of
#' transformations should be enacted using `step` functions in this package.
#' Dots are allowed as are simple multivariate outcome terms (i.e. no need for
#' `cbind`; see Examples). A model formula may not be the best choice for
#' high-dimensional data with many columns, because of problems with memory.
#' @param x,data A data frame or tibble of the *template* data set
#' (see below).
#' @return An object of class `recipe` with sub-objects:
#' \item{var_info}{A tibble containing information about the original data
#' set columns}
#' \item{term_info}{A tibble that contains the current set of terms in the
#' data set. This initially defaults to the same data contained in
#' `var_info`.}
#' \item{steps}{A list of `step` or `check` objects that define the sequence of
#' preprocessing operations that will be applied to data. The default value is
#' `NULL`}
#' \item{template}{A tibble of the data. This is initialized to be the same
#' as the data given in the `data` argument but can be different after
#' the recipe is trained.}
#'
#' @includeRmd man/rmd/recipes.Rmd details
#'
#' @export
#' @examplesIf rlang::is_installed("modeldata")
#'
#' # formula example with single outcome:
#' data(biomass, package = "modeldata")
#'
#' # split data
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' # With only predictors and outcomes, use a formula
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' # Now add preprocessing steps to the recipe
#' sp_signed <- rec %>%
#' step_normalize(all_numeric_predictors()) %>%
#' step_spatialsign(all_numeric_predictors())
#' sp_signed
#'
#' # ---------------------------------------------------------------------------
#' # formula multivariate example:
#' # no need for `cbind(carbon, hydrogen)` for left-hand side
#'
#' multi_y <- recipe(carbon + hydrogen ~ oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#' multi_y <- multi_y %>%
#' step_center(all_numeric_predictors()) %>%
#' step_scale(all_numeric_predictors())
#'
#' # ---------------------------------------------------------------------------
#' # example using `update_role` instead of formula:
#' # best choice for high-dimensional data
#'
#' rec <- recipe(biomass_tr) %>%
#' update_role(carbon, hydrogen, oxygen, nitrogen, sulfur,
#' new_role = "predictor"
#' ) %>%
#' update_role(HHV, new_role = "outcome") %>%
#' update_role(sample, new_role = "id variable") %>%
#' update_role(dataset, new_role = "splitting indicator")
#' rec
recipe.data.frame <-
function(x,
formula = NULL,
...,
vars = NULL,
roles = NULL) {
if (!is.null(formula)) {
if (!is.null(vars)) {
rlang::abort(
paste0(
"This `vars` specification will be ignored ",
"when a formula is used"
)
)
}
if (!is.null(roles)) {
rlang::abort(
paste0(
"This `roles` specification will be ignored ",
"when a formula is used"
)
)
}
obj <- recipe.formula(formula, x, ...)
return(obj)
}
if (is.null(vars)) {
vars <- colnames(x)
}
if (!is_tibble(x)) {
x <- as_tibble(x)
}
if (any(table(vars) > 1)) {
rlang::abort("`vars` should have unique members")
}
if (any(!(vars %in% colnames(x)))) {
rlang::abort("1+ elements of `vars` are not in `x`")
}
x <- x[, vars]
var_info <- tibble(variable = vars)
## Check and add roles when available
if (!is.null(roles)) {
if (length(roles) != length(vars)) {
rlang::abort(
paste0(
"The number of roles should be the same as the number of ",
"variables"
)
)
}
var_info$role <- roles
} else {
var_info$role <- NA_character_
}
## Add types
var_info <- full_join(get_types(x), var_info, by = "variable")
var_info$source <- "original"
# assign case weights
case_weights_cols <- map_lgl(x, hardhat::is_case_weights)
case_weights_n <- sum(case_weights_cols, na.rm = TRUE)
if (case_weights_n > 1) {
too_many_case_weights(case_weights_n)
}
var_info$role[case_weights_cols] <- "case_weights"
requirements <- new_role_requirements()
## Return final object of class `recipe`
out <- list(
var_info = var_info,
term_info = var_info,
steps = NULL,
template = x,
levels = NULL,
retained = NA,
requirements = requirements
)
class(out) <- "recipe"
out
}
#' @rdname recipe
#' @export
recipe.formula <- function(formula, data, ...) {
# check for minus:
f_funcs <- fun_calls(formula)
if (any(f_funcs == "-")) {
rlang::abort("`-` is not allowed in a recipe formula. Use `step_rm()` instead.")
}
if (rlang::is_missing(data)) {
cli::cli_abort("Argument {.var data} is missing, with no default.")
}
# Check for other in-line functions
args <- form2args(formula, data, ...)
obj <- recipe.data.frame(
x = args$x,
formula = NULL,
...,
vars = args$vars,
roles = args$roles
)
obj
}
#' @rdname recipe
#' @export
recipe.matrix <- function(x, ...) {
x <- as.data.frame(x)
recipe.data.frame(x, ...)
}
form2args <- function(formula, data, ...) {
if (!is_formula(formula)) {
formula <- as.formula(formula)
}
## check for in-line formulas
inline_check(formula)
if (!is_tibble(data)) {
data <- as_tibble(data)
}
## use rlang to get both sides of the formula
outcomes <- get_lhs_vars(formula, data)
predictors <- get_rhs_vars(formula, data, no_lhs = TRUE)
## if . was used on the rhs, subtract out the outcomes
predictors <- predictors[!(predictors %in% outcomes)]
## get `vars` from lhs and rhs of formula
vars <- c(predictors, outcomes)
## subset data columns
data <- data[, vars]
## derive roles
roles <- rep("predictor", length(predictors))
if (length(outcomes) > 0) {
roles <- c(roles, rep("outcome", length(outcomes)))
}
# assign case weights
case_weights_cols <- map_lgl(data, hardhat::is_case_weights)
case_weights_n <- sum(case_weights_cols, na.rm = TRUE)
if (case_weights_n > 1) {
too_many_case_weights(case_weights_n)
}
roles[case_weights_cols] <- "case_weights"
## pass to recipe.default with vars and roles
list(x = data, vars = vars, roles = roles)
}
inline_check <- function(x) {
funs <- fun_calls(x)
funs <- funs[!(funs %in% c("~", "+", "-"))]
if (length(funs) > 0) {
rlang::abort(paste0(
"No in-line functions should be used here; ",
"use steps to define baking actions."
))
}
invisible(x)
}
#' @aliases prep prep.recipe
#' @param x an object
#' @param ... further arguments passed to or from other methods (not currently
#' used).
#' @export
prep <- function(x, ...) {
UseMethod("prep")
}
#' Estimate a preprocessing recipe
#'
#' For a recipe with at least one preprocessing operation, estimate the required
#' parameters from a training set that can be later applied to other data
#' sets.
#' @param training A data frame or tibble that will be used to estimate
#' parameters for preprocessing.
#' @param fresh A logical indicating whether already trained operation should be
#' re-trained. If `TRUE`, you should pass in a data set to the argument
#' `training`.
#' @param verbose A logical that controls whether progress is reported as operations
#' are executed.
#' @param log_changes A logical for printing a summary for each step regarding
#' which (if any) columns were added or removed during training.
#' @param retain A logical: should the *preprocessed* training set be saved
#' into the `template` slot of the recipe after training? This is a good
#' idea if you want to add more steps later but want to avoid re-training
#' the existing steps. Also, it is advisable to use `retain = TRUE`
#' if any steps use the option `skip = FALSE`. **Note** that this can make
#' the final recipe size large. When `verbose = TRUE`, a message is written
#' with the approximate object size in memory but may be an underestimate
#' since it does not take environments into account.
#' @param strings_as_factors A logical: should character columns be converted to
#' factors? This affects the preprocessed training set (when
#' `retain = TRUE`) as well as the results of `bake.recipe`.
#' @return A recipe whose step objects have been updated with the required
#' quantities (e.g. parameter estimates, model objects, etc). Also, the
#' `term_info` object is likely to be modified as the operations are
#' executed.
#' @details
#'
#' Given a data set, this function estimates the required quantities and
#' statistics needed by any operations. [prep()] returns an updated recipe
#' with the estimates. If you are using a recipe as a preprocessor for modeling,
#' we **highly recommend** that you use a `workflow()` instead of manually
#' estimating a recipe (see the example in [recipe()]).
#'
#' Note that missing data is handled in the steps; there is no global
#' `na.rm` option at the recipe level or in [prep()].
#'
#' Also, if a recipe has been trained using [prep()] and then steps
#' are added, [prep()] will only update the new operations. If
#' `fresh = TRUE`, all of the operations will be (re)estimated.
#'
#' As the steps are executed, the `training` set is updated. For example,
#' if the first step is to center the data and the second is to scale the
#' data, the step for scaling is given the centered data.
#'
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(ames, package = "modeldata")
#'
#' library(dplyr)
#'
#' ames <- mutate(ames, Sale_Price = log10(Sale_Price))
#'
#' ames_rec <-
#' recipe(
#' Sale_Price ~ Longitude + Latitude + Neighborhood + Year_Built + Central_Air,
#' data = ames
#' ) %>%
#' step_other(Neighborhood, threshold = 0.05) %>%
#' step_dummy(all_nominal()) %>%
#' step_interact(~ starts_with("Central_Air"):Year_Built) %>%
#' step_ns(Longitude, Latitude, deg_free = 5)
#'
#' prep(ames_rec, verbose = TRUE)
#'
#' prep(ames_rec, log_changes = TRUE)
#' @rdname prep
#' @export
prep.recipe <-
function(x,
training = NULL,
fresh = FALSE,
verbose = FALSE,
retain = TRUE,
log_changes = FALSE,
strings_as_factors = TRUE,
...) {
training <- check_training_set(training, x, fresh)
tr_data <- train_info(training)
# Record the original levels for later checking
orig_lvls <- lapply(training, get_levels)
if (strings_as_factors) {
lvls <- lapply(training, get_levels)
training <- strings2factors(training, lvls)
} else {
lvls <- NULL
}
# The only way to get the results for skipped steps is to
# use `retain = TRUE` so issue a warning if this is not the case
skippers <- map_lgl(x$steps, is_skipable)
if (any(skippers) & !retain) {
rlang::warn(
paste0(
"Since some operations have `skip = TRUE`, using ",
"`retain = TRUE` will allow those steps results to ",
"be accessible."
)
)
}
# Recalculate types of old recipes (>= 1.0.1) if possible and necessary
if (all(x$var_info$source == "original") &
inherits(x$var_info$type, "character")) {
x$var_info <- x$var_info %>%
dplyr::select(-type) %>%
dplyr::left_join(get_types(training), by = "variable") %>%
dplyr::select(variable, type, role, source)
}
if (all(x$term_info$source == "original") &
inherits(x$term_info$type, "character")) {
x$term_info <- x$term_info %>%
dplyr::select(-type) %>%
dplyr::left_join(get_types(training), by = "variable") %>%
dplyr::select(variable, type, role, source)
}
if (fresh) {
x$term_info <- x$var_info
}
running_info <- x$term_info %>% mutate(number = 0, skip = FALSE)
for (i in seq(along.with = x$steps)) {
needs_tuning <- map_lgl(x$steps[[i]], is_tune)
if (any(needs_tuning)) {
arg <- names(needs_tuning)[needs_tuning]
arg <- paste0("'", arg, "'", collapse = ", ")
msg <-
paste0(
"You cannot `prep()` a tuneable recipe. Argument(s) with `tune()`: ",
arg,
". Do you want to use a tuning function such as `tune_grid()`?"
)
rlang::abort(msg)
}
note <- paste("oper", i, gsub("_", " ", class(x$steps[[i]])[1]))
if (!x$steps[[i]]$trained | fresh) {
if (verbose) {
cat(note, "[training]", "\n")
}
before_nms <- names(training)
# Compute anything needed for the preprocessing steps
# then apply it to the current training set
x$steps[[i]] <- recipes_error_context(
prep(x$steps[[i]],
training = training,
info = x$term_info
),
step_name = class(x$steps[[i]])[[1L]]
)
training <- recipes_error_context(
bake(x$steps[[i]], new_data = training),
step_name = class(x$steps[[i]])[[1L]]
)
if (!is_tibble(training)) {
abort("bake() methods should always return tibbles")
}
x$term_info <-
merge_term_info(get_types(training), x$term_info)
# Update the roles and the term source
if (!is.na(x$steps[[i]]$role)) {
new_vars <- setdiff(x$term_info$variable, running_info$variable)
pos_new_var <- x$term_info$variable %in% new_vars
pos_new_and_na_role <- pos_new_var & is.na(x$term_info$role)
pos_new_and_na_source <- pos_new_var & is.na(x$term_info$source)
x$term_info$role[pos_new_and_na_role] <- x$steps[[i]]$role
x$term_info$source[pos_new_and_na_source] <- "derived"
}
changelog(log_changes, before_nms, names(training), x$steps[[i]])
running_info <- rbind(
running_info,
mutate(x$term_info, number = i, skip = x$steps[[i]]$skip)
)
} else {
if (verbose) cat(note, "[pre-trained]\n")
}
}
## The steps may have changed the data so reassess the levels
if (strings_as_factors) {
lvls <- lapply(training, get_levels)
check_lvls <- has_lvls(lvls)
if (!any(check_lvls)) lvls <- NULL
} else {
lvls <- NULL
}
if (retain) {
if (verbose) {
cat(
"The retained training set is ~",
format(object.size(training), units = "Mb", digits = 2),
" in memory.\n\n"
)
}
x$template <- training
} else {
x$template <- training[0, ]
}
x$tr_info <- tr_data
x$levels <- lvls
x$orig_lvls <- orig_lvls
x$retained <- retain
# In case a variable was removed, and that removal step used
# `skip = TRUE`, we need to retain its record so that
# selectors can be properly used with `bake`. This tibble
# captures every variable originally in the data or that was
# created along the way. `number` will be the last step where
# that variable was available.
x$last_term_info <-
running_info %>%
group_by(variable) %>%
arrange(desc(number)) %>%
summarise(
type = list(dplyr::first(type)),
role = as.list(unique(unlist(role))),
source = dplyr::first(source),
number = dplyr::first(number),
skip = dplyr::first(skip),
.groups = "keep"
)
x
}
#' @rdname bake
#' @aliases bake bake.recipe
#' @export
bake <- function(object, ...) {
UseMethod("bake")
}
#' Apply a trained preprocessing recipe
#'
#' For a recipe with at least one preprocessing operation that has been trained by
#' [prep()], apply the computations to new data.
#' @param object A trained object such as a [recipe()] with at least
#' one preprocessing operation.
#' @param new_data A data frame or tibble for whom the preprocessing will be
#' applied. If `NULL` is given to `new_data`, the pre-processed _training
#' data_ will be returned (assuming that `prep(retain = TRUE)` was used).
#' @param ... One or more selector functions to choose which variables will be
#' returned by the function. See [selections()] for more details.
#' If no selectors are given, the default is to use
#' [everything()].
#' @param composition Either "tibble", "matrix", "data.frame", or
#' "dgCMatrix" for the format of the processed data set. Note that
#' all computations during the baking process are done in a
#' non-sparse format. Also, note that this argument should be
#' called **after** any selectors and the selectors should only
#' resolve to numeric columns (otherwise an error is thrown).
#' @return A tibble, matrix, or sparse matrix that may have different
#' columns than the original columns in `new_data`.
#' @details [bake()] takes a trained recipe and applies its operations to a
#' data set to create a design matrix. If you are using a recipe as a
#' preprocessor for modeling, we **highly recommend** that you use a `workflow()`
#' instead of manually applying a recipe (see the example in [recipe()]).
#'
#' If the data set is not too large, time can be saved by using the
#' `retain = TRUE` option of [prep()]. This stores the processed version of the
#' training set. With this option set, `bake(object, new_data = NULL)`
#' will return it for free.
#'
#' Also, any steps with `skip = TRUE` will not be applied to the
#' data when [bake()] is invoked with a data set in `new_data`.
#' `bake(object, new_data = NULL)` will always have all of the steps applied.
#' @seealso [recipe()], [prep()]
#' @rdname bake
#' @examplesIf rlang::is_installed("modeldata")
#' data(ames, package = "modeldata")
#'
#' ames <- mutate(ames, Sale_Price = log10(Sale_Price))
#'
#' ames_rec <-
#' recipe(Sale_Price ~ ., data = ames[-(1:6), ]) %>%
#' step_other(Neighborhood, threshold = 0.05) %>%
#' step_dummy(all_nominal()) %>%
#' step_interact(~ starts_with("Central_Air"):Year_Built) %>%
#' step_ns(Longitude, Latitude, deg_free = 2) %>%
#' step_zv(all_predictors()) %>%
#' prep()
#'
#' # return the training set (already embedded in ames_rec)
#' bake(ames_rec, new_data = NULL)
#'
#' # apply processing to other data:
#' bake(ames_rec, new_data = head(ames))
#'
#' # only return selected variables:
#' bake(ames_rec, new_data = head(ames), all_numeric_predictors())
#' bake(ames_rec, new_data = head(ames), starts_with(c("Longitude", "Latitude")))
#' @export
bake.recipe <- function(object, new_data, ..., composition = "tibble") {
if (rlang::is_missing(new_data)) {
rlang::abort("'new_data' must be either a data frame or NULL. No value is not allowed.")
}
if (is.null(new_data)) {
return(juice(object, ..., composition = composition))
}
if (!fully_trained(object)) {
rlang::abort("At least one step has not been trained. Please run `prep`.")
}
if (!any(composition == formats)) {
rlang::abort(
paste0(
"`composition` should be one of: ",
paste0("'", formats, "'", collapse = ",")
)
)
}
terms <- quos(...)
if (is_empty(terms)) {
terms <- quos(everything())
}
# In case someone used the deprecated `newdata`:
if (is.null(new_data) || is.null(ncol(new_data))) {
if (any(names(terms) == "newdata")) {
rlang::abort("Please use `new_data` instead of `newdata` with `bake`.")
} else {
rlang::abort("Please pass a data set to `new_data`.")
}
}
if (!is_tibble(new_data)) {
new_data <- as_tibble(new_data)
}
check_role_requirements(object, new_data)
check_nominal_type(new_data, object$orig_lvls)
# Drop completely new columns from `new_data` and reorder columns that do
# still exist to match the ordering used when training
original_names <- names(new_data)
original_training_names <- unique(object$var_info$variable)
bakeable_names <- intersect(original_training_names, original_names)
new_data <- new_data[, bakeable_names]
n_steps <- length(object$steps)
for (i in seq_len(n_steps)) {
step <- object$steps[[i]]
if (is_skipable(step)) {
next
}
new_data <- bake(step, new_data = new_data)
if (!is_tibble(new_data)) {
abort("bake() methods should always return tibbles")
}
}
# Use `last_term_info`, which maintains info on all columns that got added
# and removed from the training data. This is important for skipped steps
# which might have resulted in columns not being added/removed in the test
# set.
info <- object$last_term_info
# Now reduce to only user selected columns
out_names <- recipes_eval_select(terms, new_data, info,
check_case_weights = FALSE)
new_data <- new_data[, out_names]
## The levels are not null when no nominal data are present or
## if strings_as_factors = FALSE in `prep`
if (!is.null(object$levels)) {
var_levels <- object$levels
var_levels <- var_levels[out_names]
check_values <-
vapply(var_levels, function(x) {
(!all(is.na(x)))
}, c(all = TRUE))
var_levels <- var_levels[check_values]
if (length(var_levels) > 0) {
new_data <- strings2factors(new_data, var_levels)
}
}
if (composition == "dgCMatrix") {
new_data <- convert_matrix(new_data, sparse = TRUE)
} else if (composition == "matrix") {
new_data <- convert_matrix(new_data, sparse = FALSE)
} else if (composition == "data.frame") {
new_data <- base::as.data.frame(new_data)
}
new_data
}
#' Print a Recipe
#'
#' @aliases print.recipe
#' @param x A `recipe` object
#' @param form_width The number of characters used to print the variables or
#' terms in a formula
#' @param ... further arguments passed to or from other methods (not currently
#' used).
#' @return The original object (invisibly)
#'
#' @export
print.recipe <- function(x, form_width = 30, ...) {
cat("Recipe\n\n")
cat("Inputs:\n\n")
no_role <- is.na(x$var_info$role)
if (any(!no_role)) {
tab <- as.data.frame(table(x$var_info$role))
colnames(tab) <- c("role", "#variables")
print(tab, row.names = FALSE)
if (any(no_role)) {
cat("\n ", sum(no_role), "variables with undeclared roles\n")
}
} else {
cat(" ", nrow(x$var_info), "variables (no declared roles)\n")
}
if ("tr_info" %in% names(x)) {
nmiss <- x$tr_info$nrows - x$tr_info$ncomplete
cat("\nTraining data contained ",
x$tr_info$nrows,
" data points and ",
sep = ""
)
if (x$tr_info$nrows == x$tr_info$ncomplete) {
cat("no missing data.\n")
} else {
cat(
nmiss,
"incomplete",
ifelse(nmiss > 1, "rows.", "row."),
"\n"
)
}
}
if (!is.null(x$steps)) {
cat("\nOperations:\n\n")
for (i in seq_along(x$steps)) {
print(x$steps[[i]], form_width = form_width)
}
}
invisible(x)
}
#' Summarize a recipe
#'
#' This function prints the current set of variables/features and some of their
#' characteristics.
#' @aliases summary.recipe
#' @param object A `recipe` object
#' @param original A logical: show the current set of variables or the original
#' set when the recipe was defined.
#' @param ... further arguments passed to or from other methods (not currently
#' used).
#' @return A tibble with columns `variable`, `type`, `role`,
#' and `source`. When `original = TRUE`, an additional column is included
#' named `required_to_bake` (based on the results of
#' [update_role_requirements()]).
#' @details
#' Note that, until the recipe has been trained,
#' the current and original variables are the same.
#'
#' It is possible for variables to have multiple roles by adding them with
#' [add_role()]. If a variable has multiple roles, it will have more than one
#' row in the summary tibble.
#'
#' @examples
#' rec <- recipe(~., data = USArrests)
#' summary(rec)
#' rec <- step_pca(rec, all_numeric(), num_comp = 3)
#' summary(rec) # still the same since not yet trained
#' rec <- prep(rec, training = USArrests)
#' summary(rec)
#' @export
#' @seealso [recipe()] [prep()]
summary.recipe <- function(object, original = FALSE, ...) {
if (original) {
res <- object$var_info
res <- dplyr::left_join(res, bake_req_tibble(object), by = "role")
} else {
res <- object$term_info
}
res
}
bake_req_tibble <- function(x) {
req <- compute_bake_role_requirements(x)
req <-
tibble::tibble(role = names(req), required_to_bake = unname(req)) %>%
dplyr::mutate(role = ifelse(role == "NA", NA_character_, role))
req
}
#' Extract transformed training set
#'
#' @description
#' `r lifecycle::badge('superseded')`
#'
#' As of `recipes` version 0.1.14, **`juice()` is superseded** in favor of
#' `bake(object, new_data = NULL)`.
#'
#' As steps are estimated by `prep`, these operations are applied to the
#' training set. Rather than running [bake()] to duplicate this processing, this
#' function will return variables from the processed training set.
#'
#' @inheritParams bake.recipe
#' @param object A `recipe` object that has been prepared with the option
#' `retain = TRUE`.
#'
#' @details
#' `juice()` will return the results of a recipe where _all steps_ have been
#' applied to the data, irrespective of the value of the step's `skip` argument.
#'
#' `juice()` can only be used if a recipe was prepped with `retain = TRUE`. This
#' is equivalent to `bake(object, new_data = NULL)` which is the preferred way
#' to extract the transformation of the training data set.
#'
#' @export
#' @seealso [recipe()] [prep()] [bake()]
juice <- function(object, ..., composition = "tibble") {
if (!fully_trained(object)) {
rlang::abort("At least one step has not been trained. Please run `prep()`.")
}
if (!isTRUE(object$retained)) {
rlang::abort(paste0(
"Use `retain = TRUE` in `prep()` to be able ",
"to extract the training set"
))
}
if (!any(composition == formats)) {
rlang::abort(paste0(
"`composition` should be one of: ",
paste0("'", formats, "'", collapse = ",")
))
}
terms <- quos(...)
if (is_empty(terms)) {
terms <- quos(everything())
}
# Get user requested columns
new_data <- object$template
out_names <- recipes_eval_select(terms, new_data, object$term_info,
check_case_weights = FALSE)
new_data <- new_data[, out_names]
## Since most models require factors, do the conversion from character
if (!is.null(object$levels)) {
var_levels <- object$levels
var_levels <- var_levels[out_names]
check_values <-
vapply(var_levels, function(x) {
(!all(is.na(x)))
}, c(all = TRUE))
var_levels <- var_levels[check_values]
if (length(var_levels) > 0) {
new_data <- strings2factors(new_data, var_levels)
}
}
if (composition == "dgCMatrix") {
new_data <- convert_matrix(new_data, sparse = TRUE)
} else if (composition == "matrix") {
new_data <- convert_matrix(new_data, sparse = FALSE)
} else if (composition == "data.frame") {
new_data <- base::as.data.frame(new_data)
} else if (composition == "tibble") {
new_data <- tibble::as_tibble(new_data)
}
new_data
}
formats <- c("tibble", "dgCMatrix", "matrix", "data.frame")
utils::globalVariables(c("number"))
# ------------------------------------------------------------------------------
#' S3 methods for tracking which additional packages are needed for steps.
#'
#' @param x A recipe or recipe step
#' @param infra Should recipes itself be included in the result?
#' @return A character vector
#' @name required_pkgs.recipe
#' @keywords internal
#' @export
required_pkgs.recipe <- function(x, infra = TRUE, ...) {
res <- purrr::map(x$steps, required_pkgs)
res <- unique(unlist(res))
if (infra) {
res <- c("recipes", res)
}
res <- unique(res)
res <- res[length(res) != 0]
res
}
#' @rdname required_pkgs.recipe
#' @export
required_pkgs.step <- function(x, ...) {
character(0)
}
#' @rdname required_pkgs.recipe
#' @export
required_pkgs.check <- function(x, ...) {
character(0)
}
|