File: relevel.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (147 lines) | stat: -rw-r--r-- 4,047 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#' Relevel factors to a desired level
#'
#' `step_relevel` creates a *specification* of a recipe
#'  step that will reorder the provided factor columns so that
#'  the level specified by ref_level is first. This is useful
#'  for contr.treatment contrasts which take the first level as the
#'  reference.
#'
#' @inheritParams step_center
#' @param ref_level A single character value that will be used to
#'  relevel the factor column(s) (if the level is present).
#' @param objects A list of objects that contain the information
#'  on factor levels that will be determined by [prep()].
#' @template step-return
#' @family dummy variable and encoding steps
#' @export
#' @details The selected variables are releveled to a level
#' (given by `ref_level`). Placing the `ref_level` in the first
#' position.
#'
#' Note that if the original columns are character, they will be
#'  converted to factors by this step.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(Sacramento, package = "modeldata")
#' rec <- recipe(~ city + zip, data = Sacramento) %>%
#'   step_unknown(city, new_level = "UNKNOWN") %>%
#'   step_relevel(city, ref_level = "UNKNOWN") %>%
#'   prep()
#'
#' data <- bake(rec, Sacramento)
#' levels(data$city)
step_relevel <-
  function(recipe,
           ...,
           role = NA,
           trained = FALSE,
           ref_level,
           objects = NULL,
           skip = FALSE,
           id = rand_id("relevel")) {
    add_step(
      recipe,
      step_relevel_new(
        terms = enquos(...),
        role = role,
        trained = trained,
        ref_level = ref_level,
        objects = objects,
        skip = skip,
        id = id
      )
    )
  }

step_relevel_new <-
  function(terms, role, trained, ref_level, objects, skip, id) {
    step(
      subclass = "relevel",
      terms = terms,
      role = role,
      trained = trained,
      ref_level = ref_level,
      objects = objects,
      skip = skip,
      id = id
    )
  }

#' @export
prep.step_relevel <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("string", "factor", "ordered"))

  # Get existing levels and their factor type (i.e. ordered)
  objects <- lapply(training[, col_names], get_existing_values)
  # Check to make sure that no ordered levels are provided
  order_check <- map_lgl(objects, attr, "is_ordered")
  if (any(order_check)) {
    rlang::abort(
      "Columns contain ordered factors (which cannot be releveled) '",
      x$ref_level, "': ",
      paste0(names(order_check)[order_check], collapse = ", ")
    )
  }

  # Check to make sure that the reference level exists in the factor
  ref_check <- map_lgl(objects, function(x, y) !y %in% x,
    y = x$ref_level
  )
  if (any(ref_check)) {
    rlang::abort(
      paste0(
        "Columns must contain the reference level '",
        x$ref_level, "': ",
        paste0(names(ref_check)[ref_check], collapse = ", ")
      )
    )
  }

  step_relevel_new(
    terms = x$terms,
    role = x$role,
    trained = TRUE,
    ref_level = x$ref_level,
    objects = objects,
    skip = x$skip,
    id = x$id
  )
}

#' @export
bake.step_relevel <- function(object, new_data, ...) {
  check_new_data(names(object$objects), object, new_data)
  for (i in names(object$objects)) {
    new_data[[i]] <- stats::relevel(as.factor(new_data[[i]]), ref = object$ref_level)
  }
  new_data
}

print.step_relevel <-
  function(x, width = max(20, options()$width - 30), ...) {
    title <- "Re-order factor level to ref_level for "
    print_step(names(x$objects), x$terms, x$trained, title, width)
    invisible(x)
  }

#' @rdname tidy.recipe
#' @export
tidy.step_relevel <- function(x, ...) {
  if (is_trained(x)) {
    res <- tibble(
      terms = names(x$objects),
      value = x$ref_level
    )
  } else {
    term_names <- sel2char(x$terms)
    res <- tibble(
      terms = term_names,
      value = x$ref_level
    )
  }
  res$id <- x$id
  res
}