1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
#' Relevel factors to a desired level
#'
#' `step_relevel` creates a *specification* of a recipe
#' step that will reorder the provided factor columns so that
#' the level specified by ref_level is first. This is useful
#' for contr.treatment contrasts which take the first level as the
#' reference.
#'
#' @inheritParams step_center
#' @param ref_level A single character value that will be used to
#' relevel the factor column(s) (if the level is present).
#' @param objects A list of objects that contain the information
#' on factor levels that will be determined by [prep()].
#' @template step-return
#' @family dummy variable and encoding steps
#' @export
#' @details The selected variables are releveled to a level
#' (given by `ref_level`). Placing the `ref_level` in the first
#' position.
#'
#' Note that if the original columns are character, they will be
#' converted to factors by this step.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(Sacramento, package = "modeldata")
#' rec <- recipe(~ city + zip, data = Sacramento) %>%
#' step_unknown(city, new_level = "UNKNOWN") %>%
#' step_relevel(city, ref_level = "UNKNOWN") %>%
#' prep()
#'
#' data <- bake(rec, Sacramento)
#' levels(data$city)
step_relevel <-
function(recipe,
...,
role = NA,
trained = FALSE,
ref_level,
objects = NULL,
skip = FALSE,
id = rand_id("relevel")) {
add_step(
recipe,
step_relevel_new(
terms = enquos(...),
role = role,
trained = trained,
ref_level = ref_level,
objects = objects,
skip = skip,
id = id
)
)
}
step_relevel_new <-
function(terms, role, trained, ref_level, objects, skip, id) {
step(
subclass = "relevel",
terms = terms,
role = role,
trained = trained,
ref_level = ref_level,
objects = objects,
skip = skip,
id = id
)
}
#' @export
prep.step_relevel <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("string", "factor", "ordered"))
# Get existing levels and their factor type (i.e. ordered)
objects <- lapply(training[, col_names], get_existing_values)
# Check to make sure that no ordered levels are provided
order_check <- map_lgl(objects, attr, "is_ordered")
if (any(order_check)) {
rlang::abort(
"Columns contain ordered factors (which cannot be releveled) '",
x$ref_level, "': ",
paste0(names(order_check)[order_check], collapse = ", ")
)
}
# Check to make sure that the reference level exists in the factor
ref_check <- map_lgl(objects, function(x, y) !y %in% x,
y = x$ref_level
)
if (any(ref_check)) {
rlang::abort(
paste0(
"Columns must contain the reference level '",
x$ref_level, "': ",
paste0(names(ref_check)[ref_check], collapse = ", ")
)
)
}
step_relevel_new(
terms = x$terms,
role = x$role,
trained = TRUE,
ref_level = x$ref_level,
objects = objects,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_relevel <- function(object, new_data, ...) {
check_new_data(names(object$objects), object, new_data)
for (i in names(object$objects)) {
new_data[[i]] <- stats::relevel(as.factor(new_data[[i]]), ref = object$ref_level)
}
new_data
}
print.step_relevel <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Re-order factor level to ref_level for "
print_step(names(x$objects), x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_relevel <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$objects),
value = x$ref_level
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
value = x$ref_level
)
}
res$id <- x$id
res
}
|