1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
#' Manually Alter Roles
#'
#' @description
#' `update_role()` alters an existing role in the recipe or assigns an initial
#' role to variables that do not yet have a declared role.
#'
#' `add_role()` adds an _additional_ role to variables that already have a role
#' in the recipe. It does not overwrite old roles, as a single variable can have
#' multiple roles.
#'
#' `remove_role()` eliminates a single existing role in the recipe.
#' @param recipe An existing [recipe()].
#'
#' @param ... One or more selector functions to choose which variables are
#' being assigned a role. See [selections()] for more details.
#'
#' @param new_role A character string for a single role.
#'
#' @param new_type A character string for specific type that the variable should
#' be identified as. If left as `NULL`, the type is automatically identified
#' as the _first_ type you see for that variable in `summary(recipe)`.
#'
#' @param old_role A character string for the specific role to update for the
#' variables selected by `...`. `update_role()` accepts a `NULL` as long as the
#' variables have only a single role.
#'
#' @return An updated recipe object.
#'
#' @details
#'
#' Variables can have any arbitrary role (see the examples) but there are two
#' special standard roles, `"predictor"` and `"outcome"`. These two roles are
#' typically required when fitting a model.
#'
#' `update_role()` should be used when a variable doesn't currently have a role
#' in the recipe, or to replace an `old_role` with a `new_role`. `add_role()`
#' only adds additional roles to variables that already have roles and will
#' throw an error when the current role is missing (i.e. `NA`).
#'
#' When using `add_role()`, if a variable is selected that already has the
#' `new_role`, a warning is emitted and that variable is skipped so no duplicate
#' roles are added.
#'
#' Adding or updating roles is a useful way to group certain variables that
#' don't fall in the standard `"predictor"` bucket. You can perform a step
#' on all of the variables that have a custom role with the selector
#' [has_role()].
#'
#' ```{r, child = "man/rmd/non-standard-roles.Rmd"}
#' ```
#'
#' @examplesIf rlang::is_installed("modeldata")
#' library(recipes)
#' data(biomass, package = "modeldata")
#'
#' # Using the formula method, roles are created for any outcomes and predictors:
#' recipe(HHV ~ ., data = biomass) %>%
#' summary()
#'
#' # However `sample` and `dataset` aren't predictors. Since they already have
#' # roles, `update_role()` can be used to make changes, to any arbitrary role:
#' recipe(HHV ~ ., data = biomass) %>%
#' update_role(sample, new_role = "id variable") %>%
#' update_role(dataset, new_role = "splitting variable") %>%
#' summary()
#'
#' # `update_role()` cannot set a role to NA, use `remove_role()` for that
#' \dontrun{
#' recipe(HHV ~ ., data = biomass) %>%
#' update_role(sample, new_role = NA_character_)
#' }
#'
#' # ------------------------------------------------------------------------------
#'
#' # Variables can have more than one role. `add_role()` can be used
#' # if the column already has at least one role:
#' recipe(HHV ~ ., data = biomass) %>%
#' add_role(carbon, sulfur, new_role = "something") %>%
#' summary()
#'
#' # `update_role()` has an argument called `old_role` that is required to
#' # unambiguously update a role when the column currently has multiple roles.
#' recipe(HHV ~ ., data = biomass) %>%
#' add_role(carbon, new_role = "something") %>%
#' update_role(carbon, new_role = "something else", old_role = "something") %>%
#' summary()
#'
#' # `carbon` has two roles at the end, so the last `update_roles()` fails since
#' # `old_role` was not given.
#' \dontrun{
#' recipe(HHV ~ ., data = biomass) %>%
#' add_role(carbon, sulfur, new_role = "something") %>%
#' update_role(carbon, new_role = "something else")
#' }
#'
#' # ------------------------------------------------------------------------------
#'
#' # To remove a role, `remove_role()` can be used to remove a single role.
#' recipe(HHV ~ ., data = biomass) %>%
#' add_role(carbon, new_role = "something") %>%
#' remove_role(carbon, old_role = "something") %>%
#' summary()
#'
#' # To remove all roles, call `remove_role()` multiple times to reset to `NA`
#' recipe(HHV ~ ., data = biomass) %>%
#' add_role(carbon, new_role = "something") %>%
#' remove_role(carbon, old_role = "something") %>%
#' remove_role(carbon, old_role = "predictor") %>%
#' summary()
#'
#' # ------------------------------------------------------------------------------
#'
#' # If the formula method is not used, all columns have a missing role:
#' recipe(biomass) %>%
#' summary()
#' @name roles
NULL
#' @export
#' @rdname roles
add_role <- function(recipe, ..., new_role = "predictor", new_type = NULL) {
single_chr(new_role, "new_", null_ok = FALSE)
if (length(new_type) != 1L & length(new_type) != 0L) {
rlang::abort("`new_type` must have length 1.")
}
if (!is.character(new_type) & !is.null(new_type)) {
rlang::abort("`new_type` must be a character vector, or `NULL`.")
}
terms <- quos(...)
if (new_role == "case_weights") {
rlang::abort(
c(
"Roles of \"case_weights\" cannot be set using `add_role()`.",
i = paste(
"Please use `frequency_weights()` or `importance_weights()`",
"to specify case weights before the data is passed to `recipe()`."
)
)
)
}
# Roles can only be changed on the original data supplied to `recipe()`,
# so this is safe
data <- recipe$template
info <- recipe$var_info
vars <- recipes_eval_select(terms, data, info, check_case_weights = FALSE)
if (length(vars) == 0L) {
rlang::warn("No columns were selected in `add_role()`.")
return(recipe)
}
case_weights_vars <- info %>%
filter(role == "case_weights", variable %in% vars)
if (nrow(case_weights_vars) > 0) {
rlang::abort(
"`add_role()` cannot be used on variables with role \"case_weights\"."
)
}
# Check to see if role already exists
# remove variables where the role already exists
existing_var_idx <- recipe$var_info$variable %in% vars
if (all(is.na(recipe$var_info$role[existing_var_idx]))) {
vars <- glue::glue_collapse(glue::single_quote(vars), sep = ", ")
rlang::abort(glue::glue(
"No role currently exists for column(s): {vars}. Please use ",
"`update_role()` instead."
))
}
role_already_exists <- recipe$var_info$role[existing_var_idx] %in% new_role
# Allow the user to add the same role with a different type
if (!is.null(new_type)) {
type_already_exists <- recipe$var_info$type[existing_var_idx] %in% new_type
role_already_exists <- role_already_exists & type_already_exists
}
if (any(role_already_exists)) {
existing_vars <- recipe$var_info$variable[existing_var_idx]
vars_that_role_exists_for <- existing_vars[role_already_exists]
bad_vars <- glue::glue_collapse(
glue::single_quote(vars_that_role_exists_for),
sep = ", "
)
rlang::warn(
glue::glue(
"Role, '{new_role}', already exists for column(s): {bad_vars}. ",
"Skipping."
)
)
vars <- vars[!(vars %in% vars_that_role_exists_for)]
}
# Pull in first type we come across if unspecified
if (is.null(new_type)) {
new_type <- purrr::map(vars, ~ {
first_row_with_var <- which(recipe$var_info$variable == .x)[1]
recipe$var_info$type[[first_row_with_var]]
})
} else {
new_type <- as.list(rep(new_type, times = length(vars)))
}
source <- purrr::map_chr(vars, ~ {
first_row_with_var <- which(recipe$var_info$variable == .x)[1]
recipe$var_info$source[first_row_with_var]
})
for (i in seq_along(vars)) {
last_row_with_var <- dplyr::last(which(recipe$var_info$variable == vars[i]))
recipe$var_info <- tibble::add_row(
.data = recipe$var_info,
variable = unname(vars[i]),
type = list(unname(new_type[[i]])),
role = new_role,
source = unname(source[i]),
.after = last_row_with_var
)
}
recipe$term_info <- recipe$var_info
recipe
}
#' @export
#' @rdname roles
update_role <- function(recipe, ..., new_role = "predictor", old_role = NULL) {
single_chr(new_role, "new_", null_ok = FALSE)
single_chr(old_role, "old_", null_ok = TRUE)
terms <- quos(...)
if (new_role == "case_weights") {
rlang::abort(
c(
"Roles of \"case_weights\" cannot be set using `update_role()`.",
i = paste(
"Please use `frequency_weights()` or `importance_weights()`",
"to specify case weights before the data is passed to `recipe()`."
)
)
)
}
# Roles can only be changed on the original data supplied to `recipe()`,
# so this is safe
data <- recipe$template
info <- recipe$var_info
vars <- recipes_eval_select(terms, data, info, check_case_weights = FALSE)
if (length(vars) == 0L) {
rlang::warn("No columns were selected in `update_role()`.")
return(recipe)
}
case_weights_vars <- info %>%
filter(role == "case_weights", variable %in% vars)
if (nrow(case_weights_vars) > 0) {
rlang::abort(
"`update_role()` cannot be used on variables with role \"case_weights\"."
)
}
# check to see if any variables have multiple roles
if (is.null(old_role)) {
var_counts <-
info %>%
dplyr::filter(variable %in% vars) %>%
dplyr::group_by(variable) %>%
dplyr::count()
if (any(var_counts$n > 1)) {
rlang::abort(
paste0(
"`old_role` can only be `NULL` when the variable(s) have ",
"a single existing role."
)
)
}
}
rows_to_update <- recipe$var_info$variable %in% vars
if (!is.null(old_role)) {
rows_to_update <- rows_to_update & (recipe$var_info$role %in% old_role)
}
recipe$var_info$role[rows_to_update] <- new_role
recipe$term_info <- recipe$var_info
recipe
}
# ------------------------------------------------------------------------------
#' @rdname roles
#' @export
remove_role <- function(recipe, ..., old_role) {
single_chr(old_role, "old_")
terms <- quos(...)
if (old_role == "case_weights") {
rlang::abort(
"Roles of \"case_weights\" cannot removed using `remove_role()`."
)
}
# Roles can only be changed on the original data supplied to `recipe()`,
# so this is safe
data <- recipe$template
info <- recipe$var_info
vars <- recipes_eval_select(terms, data, info)
if (length(vars) == 0L) {
rlang::warn("No columns were selected in `remove_role()`.")
return(recipe)
}
info <- info %>%
mutate(.orig_order = 1:nrow(info)) %>%
group_by(variable) %>%
do(role_rm_machine(., role = old_role, var = vars)) %>%
ungroup() %>%
arrange(.orig_order) %>%
dplyr::select(-.orig_order)
recipe$var_info <- info
recipe$term_info <- recipe$var_info
recipe
}
# Does anyone remember the 80's band The Cult?
role_rm_machine <- function(x, role, var) {
if (!any(x$variable %in% var)) {
return(x)
}
sel_role <- x$role == role
if (sum(sel_role) == 0) {
var <- glue::single_quote(x$variable[1])
role <- glue::single_quote(role)
rlang::warn(
glue::glue("Column, {var}, does not have role, {role}.")
)
return(x)
}
if (nrow(x) == 1) {
x$role <- NA_character_
} else {
x <- x[x$role != role, ]
}
x
}
single_chr <- function(x, prefix = "", null_ok = FALSE) {
arg <- paste0("`", prefix, "role", "`")
if (null_ok && is.null(x)) {
return(invisible(NULL))
}
if (length(x) != 1L) {
rlang::abort(paste0(arg, " must have length 1."))
}
if (!is.character(x)) {
rlang::abort(paste0(arg, " must be a character vector."))
}
if (is.na(x)) {
rlang::abort(paste0(arg, " must not be `NA`."))
}
invisible(NULL)
}
|