File: sample.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (178 lines) | stat: -rw-r--r-- 4,480 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#' Sample rows using dplyr
#'
#' `step_sample` creates a *specification* of a recipe step
#'  that will sample rows using [dplyr::sample_n()] or
#'  [dplyr::sample_frac()].
#'
#' @template row-ops
#' @inheritParams step_center
#' @param ... Argument ignored; included for consistency with other step
#'  specification functions.
#' @param size An integer or fraction. If the value is within (0, 1),
#'  [dplyr::sample_frac()] is applied to the data. If an integer
#'  value of 1 or greater is used, [dplyr::sample_n()] is applied.
#'  The default of `NULL` uses [dplyr::sample_n()] with the size
#'  of the training set (or smaller for smaller `new_data`).
#' @param replace Sample with or without replacement?
#' @template step-return
#' @details
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `size`, `replace`, and `id` is returned.
#'
#' @template case-weights-unsupervised
#'
#' @family row operation steps
#' @family dplyr steps
#' @export
#' @examples
#'
#' # Uses `sample_n`
#' recipe(~., data = mtcars) %>%
#'   step_sample(size = 1) %>%
#'   prep(training = mtcars) %>%
#'   bake(new_data = NULL) %>%
#'   nrow()
#'
#' # Uses `sample_frac`
#' recipe(~., data = mtcars) %>%
#'   step_sample(size = 0.9999) %>%
#'   prep(training = mtcars) %>%
#'   bake(new_data = NULL) %>%
#'   nrow()
#'
#' # Uses `sample_n` and returns _at maximum_ 20 samples.
#' smaller_cars <-
#'   recipe(~., data = mtcars) %>%
#'   step_sample() %>%
#'   prep(training = mtcars %>% slice(1:20))
#'
#' bake(smaller_cars, new_data = NULL) %>% nrow()
#' bake(smaller_cars, new_data = mtcars %>% slice(21:32)) %>% nrow()
step_sample <- function(recipe, ...,
                        role = NA,
                        trained = FALSE,
                        size = NULL,
                        replace = FALSE,
                        skip = TRUE,
                        id = rand_id("sample")) {
  if (length(list(...)) > 0) {
    rlang::warn("Selectors are not used for this step.")
  }

  if (!is_tune(size) & !is_varying(size)) {
    if (!is.null(size) & (!is.numeric(size) || size < 0)) {
      rlang::abort("`size` should be a positive number or NULL.")
    }
  }
  if (!is_tune(replace) & !is_varying(replace)) {
    if (!is.logical(replace)) {
      rlang::abort("`replace` should be a single logical.")
    }
  }

  add_step(
    recipe,
    step_sample_new(
      terms = terms,
      trained = trained,
      role = role,
      size = size,
      replace = replace,
      skip = skip,
      id = id,
      case_weights = NULL
    )
  )
}

step_sample_new <-
  function(terms, role, trained, size, replace, skip, id, case_weights) {
    step(
      subclass = "sample",
      terms = terms,
      role = role,
      trained = trained,
      size = size,
      replace = replace,
      skip = skip,
      id = id,
      case_weights = case_weights
    )
  }

#' @export
prep.step_sample <- function(x, training, info = NULL, ...) {
  if (is.null(x$size)) {
    x$size <- nrow(training)
  }

  wts <- get_case_weights(info, training)
  were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
  if (isFALSE(were_weights_used)) {
    wts <- NULL
  }

  step_sample_new(
    terms = x$terms,
    trained = TRUE,
    role = x$role,
    size = x$size,
    replace = x$replace,
    skip = x$skip,
    id = x$id,
    case_weights = were_weights_used
  )
}


#' @export
bake.step_sample <- function(object, new_data, ...) {

  if (isTRUE(object$case_weights)) {
    wts_col <- purrr::map_lgl(new_data, hardhat::is_case_weights)
    wts <- getElement(new_data, names(which(wts_col)))
    wts <- as.double(wts)
  } else {
    wts <- NULL
  }

  if (object$size >= 1) {
    n <- min(object$size, nrow(new_data))
    new_data <-
      dplyr::sample_n(
        new_data, size = floor(n), replace = object$replace, weight = wts
      )
  } else {
    new_data <-
      dplyr::sample_frac(
        new_data, size = object$size, replace = object$replace, weight = wts
      )
  }
  new_data
}


print.step_sample <-
  function(x, width = max(20, options()$width - 35), ...) {
    title <- "Row sampling "
    if (x$replace) {
      title <- paste(title, "with replacement ")
    }
    print_step(NULL, NULL, x$trained, title, width,
               case_weights = x$case_weights)
    invisible(x)
  }


#' @rdname tidy.recipe
#' @export
tidy.step_sample <- function(x, ...) {
  tibble(
    size = x$size,
    replace = x$replace,
    id = x$inputs
  )
}