1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
#' Scaling Numeric Data
#'
#' `step_scale` creates a *specification* of a recipe
#' step that will normalize numeric data to have a standard
#' deviation of one.
#'
#' @inheritParams step_center
#' @param sds A named numeric vector of standard deviations. This is `NULL`
#' until computed by [prep()].
#' @param factor A numeric value of either 1 or 2 that scales the
#' numeric inputs by one or two standard deviations. By dividing
#' by two standard deviations, the coefficients attached to
#' continuous predictors can be interpreted the same way as with
#' binary inputs. Defaults to `1`. More in reference below.
#' @param na_rm A logical value indicating whether `NA`
#' values should be removed when computing the standard deviation.
#' @template step-return
#' @family normalization steps
#' @export
#' @details Scaling data means that the standard deviation of a
#' variable is divided out of the data. `step_scale` estimates
#' the variable standard deviations from the data used in the
#' `training` argument of `prep.recipe`.
#' `bake.recipe` then applies the scaling to new data sets
#' using these standard deviations.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the selectors or variables selected) and `value` (the
#' standard deviations) is returned.
#'
#' @template case-weights-unsupervised
#'
#' @references Gelman, A. (2007) "Scaling regression inputs by
#' dividing by two standard deviations." Unpublished. Source:
#' \url{http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.pdf}.
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' scaled_trans <- rec %>%
#' step_scale(carbon, hydrogen)
#'
#' scaled_obj <- prep(scaled_trans, training = biomass_tr)
#'
#' transformed_te <- bake(scaled_obj, biomass_te)
#'
#' biomass_te[1:10, names(transformed_te)]
#' transformed_te
#' tidy(scaled_trans, number = 1)
#' tidy(scaled_obj, number = 1)
step_scale <-
function(recipe,
...,
role = NA,
trained = FALSE,
sds = NULL,
factor = 1,
na_rm = TRUE,
skip = FALSE,
id = rand_id("scale")) {
add_step(
recipe,
step_scale_new(
terms = enquos(...),
role = role,
trained = trained,
sds = sds,
factor = factor,
na_rm = na_rm,
skip = skip,
id = id,
case_weights = NULL
)
)
}
step_scale_new <-
function(terms, role, trained, sds, factor, na_rm, skip, id, case_weights) {
step(
subclass = "scale",
terms = terms,
role = role,
trained = trained,
sds = sds,
factor = factor,
na_rm = na_rm,
skip = skip,
id = id,
case_weights = case_weights
)
}
#' @export
prep.step_scale <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
if (x$factor != 1 & x$factor != 2) {
rlang::warn("Scaling `factor` should take either a value of 1 or 2")
}
vars <- variances(training[, col_names], wts, na_rm = x$na_rm)
sds <- sqrt(vars)
sds <- sd_check(sds)
sds <- sds * x$factor
step_scale_new(
terms = x$terms,
role = x$role,
trained = TRUE,
sds = sds,
factor = x$factor,
na_rm = x$na_rm,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
bake.step_scale <- function(object, new_data, ...) {
check_new_data(names(object$sds), object, new_data)
for (column in names(object$sds)) {
sd <- object$sds[column]
new_data[[column]] <- new_data[[column]] / sd
}
new_data
}
print.step_scale <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Scaling for "
print_step(names(x$sds), x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_scale <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$sds),
value = unname(x$sds)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
value = na_dbl
)
}
res$id <- x$id
res
}
|