1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
#' @name selections
#' @aliases selections
#' @aliases selection
#'
#' @title Methods for selecting variables in step functions
#'
#' @description
#'
#' Tips for selecting columns in step functions.
#'
#' @details
#' When selecting variables or model terms in `step`
#' functions, `dplyr`-like tools are used. The *selector* functions
#' can choose variables based on their name, current role, data
#' type, or any combination of these. The selectors are passed as
#' any other argument to the step. If the variables are explicitly
#' named in the step function, this might look like:
#'
#' \preformatted{
#' recipe( ~ ., data = USArrests) \%>\%
#' step_pca(Murder, Assault, UrbanPop, Rape, num_comp = 3)
#' }
#'
#' The first four arguments indicate which variables should be
#' used in the PCA while the last argument is a specific argument
#' to [step_pca()] about the number of components.
#'
#' Note that:
#'
#' \enumerate{
#' \item These arguments are not evaluated until the `prep`
#' function for the step is executed.
#' \item The `dplyr`-like syntax allows for negative signs to
#' exclude variables (e.g. `-Murder`) and the set of selectors will
#' processed in order.
#' \item A leading exclusion in these arguments (e.g. `-Murder`)
#' has the effect of adding *all* variables to the list except the
#' excluded variable(s), ignoring role information.
#' }
#'
#' Select helpers from the `tidyselect` package can also be used:
#' [tidyselect::starts_with()], [tidyselect::ends_with()],
#' [tidyselect::contains()], [tidyselect::matches()],
#' [tidyselect::num_range()], [tidyselect::everything()],
#' [tidyselect::one_of()], [tidyselect::all_of()], and
#' [tidyselect::any_of()]
#'
#' For example:
#'
#' \preformatted{
#' recipe(Species ~ ., data = iris) \%>\%
#' step_center(starts_with("Sepal"), -contains("Width"))
#' }
#'
#' would only select `Sepal.Length`
#'
#' Columns of the design matrix that may not exist when the step
#' is coded can also be selected. For example, when using
#' `step_pca()`, the number of columns created by feature extraction
#' may not be known when subsequent steps are defined. In this
#' case, using `matches("^PC")` will select all of the columns
#' whose names start with "PC" *once those columns are created*.
#'
#' There are sets of recipes-specific functions that can be used to select
#' variables based on their role or type: [has_role()] and
#' [has_type()]. For convenience, there are also functions that are
#' more specific. The functions [all_numeric()] and [all_nominal()] select
#' based on type, with nominal variables including both character and factor;
#' the functions [all_predictors()] and [all_outcomes()] select based on role.
#' The functions [all_numeric_predictors()] and [all_nominal_predictors()]
#' select intersections of role and type. Any can be used in conjunction with
#' the previous functions described for selecting variables using their names.
#'
#' A selection like this:
#'
#' \preformatted{
#' data(biomass)
#' recipe(HHV ~ ., data = biomass) \%>\%
#' step_center(all_numeric(), -all_outcomes())
#' }
#'
#' is equivalent to:
#'
#' \preformatted{
#' data(biomass)
#' recipe(HHV ~ ., data = biomass) \%>\%
#' step_center(all_numeric_predictors())
#' }
#'
#' Both result in all the numeric predictors: carbon, hydrogen,
#' oxygen, nitrogen, and sulfur.
#'
#' If a role for a variable has not been defined, it will never be
#' selected using role-specific selectors.
#'
#' ## Interactions
#'
#' Selectors can be used in [step_interact()] in similar ways but
#' must be embedded in a model formula (as opposed to a sequence
#' of selectors). For example, the interaction specification
#' could be `~ starts_with("Species"):Sepal.Width`. This can be
#' useful if `Species` was converted to dummy variables
#' previously using [step_dummy()]. The implementation of
#' `step_interact()` is special, and is more restricted than
#' the other step functions. Only the selector functions from
#' recipes and tidyselect are allowed. User defined selector functions
#' will not be recognized. Additionally, the tidyselect domain specific
#' language is not recognized here, meaning that `&`, `|`, `!`, and `-`
#' will not work.
#'
#' @includeRmd man/rmd/selections.Rmd details
NULL
# ------------------------------------------------------------------------------
#' Evaluate a selection with tidyselect semantics specific to recipes
#'
#' @description
#' `recipes_eval_select()` is a recipes specific variant of
#' [tidyselect::eval_select()] enhanced with the ability to recognize recipes
#' selectors, such as [all_numeric_predictors()]. See [selections]
#' for more information about the unique recipes selectors.
#'
#' This is a developer tool that is only useful for creating new recipes steps.
#'
#' @inheritParams ellipsis::dots_empty
#'
#' @param quos A list of quosures describing the selection. This is generally
#' the `...` argument of your step function, captured with [rlang::enquos()]
#' and stored in the step object as the `terms` element.
#'
#' @param data A data frame to use as the context to evaluate the selection in.
#' This is generally the `training` data passed to the [prep()] method
#' of your step.
#'
#' @param info A data frame of term information describing each column's type
#' and role for use with the recipes selectors. This is generally the `info`
#' data passed to the [prep()] method of your step.
#'
#' @param allow_rename Should the renaming syntax `c(foo = bar)` be allowed?
#' This is rarely required, and is currently only used by [step_select()].
#' It is unlikely that your step will need renaming capabilities.
#'
#' @param check_case_weights Should selecting case weights throw an error?
#' Defaults to `TRUE`. This is rarely changed and only needed in [juice()],
#' [bake.recipe()], [update_role()], and [add_role()].
#'
#' @param call The execution environment of a currently running function, e.g.
#' `caller_env()`. The function will be mentioned in error messages as the
#' source of the error. See the call argument of [rlang::abort()] for more
#' information.
#'
#' @return
#' A named character vector containing the evaluated selection. The names are
#' always the same as the values, except when `allow_rename = TRUE`, in which
#' case the names reflect the new names chosen by the user.
#'
#' @export
#' @examplesIf rlang::is_installed("modeldata")
#' library(rlang)
#' data(scat, package = "modeldata")
#'
#' rec <- recipe(Species ~ ., data = scat)
#'
#' info <- summary(rec)
#' info
#'
#' quos <- quos(all_numeric_predictors(), where(is.factor))
#'
#' recipes_eval_select(quos, scat, info)
recipes_eval_select <- function(quos, data, info, ..., allow_rename = FALSE,
check_case_weights = TRUE, call = caller_env()) {
ellipsis::check_dots_empty()
# Maintain ordering between `data` column names and `info$variable` so
# `eval_select()` and recipes selectors return compatible positions
data_info <- tibble(variable = names(data))
data_info <- dplyr::left_join(data_info, info, by = "variable")
nested_info <- tidyr::nest(data_info, data = -variable)
local_current_info(nested_info)
expr <- expr(c(!!!quos))
# FIXME: Ideally this is `FALSE` for strict selection,
# but empty selections incorrectly throw an
# error when this is false due to the following bug:
# https://github.com/r-lib/tidyselect/issues/221
# Once it's fixed, remove this and pass allow_rename to
# tidyselect::eval_select().
allow_rename_compat <- TRUE
sel <- tidyselect::eval_select(
expr = expr,
data = data,
allow_rename = allow_rename_compat,
error_call = call
)
# Return names not positions, as these names are
# used for both the training and test set and their positions
# may have changed. If renaming is allowed, add the new names.
out <- names(data)[sel]
names <- names(sel)
# FIXME: Remove this check when the following issue is fixed,
# at that point, just pass `allow_rename` to `eval_select()` directly.
# https://github.com/r-lib/tidyselect/issues/221
if (!allow_rename & !identical(out, names)) {
abort("Can't rename variables in this context.", call = call)
}
if (check_case_weights &&
any(out %in% info$variable[info$role == "case_weights"])) {
abort("Cannot select case weights variable.", call = call)
}
names(out) <- names
out
}
#' Role Selection
#'
#' @description
#'
#' `has_role()`, `all_predictors()`, and `all_outcomes()` can be used to
#' select variables in a formula that have certain roles.
#'
#' **In most cases**, the right approach for users will be use to use the
#' predictor-specific selectors such as `all_numeric_predictors()` and
#' `all_nominal_predictors()`. In general you should be careful about using
#' `-all_outcomes()` if a `*_predictors()` selector would do what you want.
#'
#' Similarly, `has_type()`, `all_numeric()`, `all_integer()`, `all_double()`,
#' `all_nominal()`, `all_ordered()`, `all_unordered()`, `all_factor()`,
#' `all_string()`, `all_date()` and `all_datetime()` are used to select columns
#' based on their data type.
#'
#' `all_factor()` captures ordered and unordered factors, `all_string()`
#' captures characters, `all_unordered()` captures unordered factors and
#' characters, `all_ordered()` captures ordered factors, `all_nominal()`
#' captures characters, unordered and ordered factors.
#'
#' `all_integer()` captures integers, `all_double()` captures doubles,
#' `all_numeric()` captures all kinds of numeric.
#'
#' `all_date()` captures [Date()] variables, `all_datetime()` captures
#' [POSIXct()] variables.
#'
#' See [selections] for more details.
#'
#' `current_info()` is an internal function.
#'
#' All of these functions have have limited utility outside of column selection
#' in step functions.
#'
#' @param match A single character string for the query. Exact
#' matching is used (i.e. regular expressions won't work).
#'
#' @return
#'
#' Selector functions return an integer vector.
#'
#' `current_info()` returns an environment with objects `vars` and `data`.
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' rec <- recipe(biomass) %>%
#' update_role(
#' carbon, hydrogen, oxygen, nitrogen, sulfur,
#' new_role = "predictor"
#' ) %>%
#' update_role(HHV, new_role = "outcome") %>%
#' update_role(sample, new_role = "id variable") %>%
#' update_role(dataset, new_role = "splitting indicator")
#'
#' recipe_info <- summary(rec)
#' recipe_info
#'
#' # Centering on all predictors except carbon
#' rec %>%
#' step_center(all_predictors(), -carbon) %>%
#' prep(training = biomass) %>%
#' bake(new_data = NULL)
#' @export
has_role <- function(match = "predictor") {
roles <- peek_roles()
# roles is potentially a list columns so we unlist `.x` below.
lgl_matches <- purrr::map_lgl(roles, ~ any(unlist(.x) %in% match))
which(lgl_matches)
}
#' @export
#' @rdname has_role
has_type <- function(match = "numeric") {
types <- peek_types()
lgl_matches <- purrr::map_lgl(types, ~ any(.x %in% match))
which(lgl_matches)
}
peek_roles <- function() {
peek_info("role")
}
peek_types <- function() {
peek_info("type")
}
peek_info <- function(col) {
.data <- current_info()$data
purrr::map(.data, ~ unlist(.x[[col]]))
}
#' @export
#' @rdname has_role
all_outcomes <- function() {
has_role("outcome")
}
#' @export
#' @rdname has_role
all_predictors <- function() {
has_role("predictor")
}
#' @export
#' @rdname has_role
all_date <- function() {
has_type("date")
}
#' @export
#' @rdname has_role
all_date_predictors <- function() {
intersect(has_role("predictor"), has_type("date"))
}
#' @export
#' @rdname has_role
all_datetime <- function() {
has_type("datetime")
}
#' @export
#' @rdname has_role
all_datetime_predictors <- function() {
intersect(has_role("predictor"), has_type("datetime"))
}
#' @export
#' @rdname has_role
all_double <- function() {
has_type("double")
}
#' @export
#' @rdname has_role
all_double_predictors <- function() {
intersect(has_role("predictor"), has_type("double"))
}
#' @export
#' @rdname has_role
all_factor <- function() {
has_type("factor")
}
#' @export
#' @rdname has_role
all_factor_predictors <- function() {
intersect(has_role("predictor"), has_type("factor"))
}
#' @export
#' @rdname has_role
all_integer <- function() {
has_type("integer")
}
#' @export
#' @rdname has_role
all_integer_predictors <- function() {
intersect(has_role("predictor"), has_type("integer"))
}
#' @export
#' @rdname has_role
all_logical <- function() {
has_type("logical")
}
#' @export
#' @rdname has_role
all_logical_predictors <- function() {
intersect(has_role("predictor"), has_type("logical"))
}
#' @export
#' @rdname has_role
all_nominal <- function() {
has_type("nominal")
}
#' @export
#' @rdname has_role
all_nominal_predictors <- function() {
intersect(has_role("predictor"), has_type("nominal"))
}
#' @export
#' @rdname has_role
all_numeric <- function() {
has_type("numeric")
}
#' @export
#' @rdname has_role
all_numeric_predictors <- function() {
intersect(has_role("predictor"), has_type("numeric"))
}
#' @export
#' @rdname has_role
all_ordered <- function() {
has_type("ordered")
}
#' @export
#' @rdname has_role
all_ordered_predictors <- function() {
intersect(has_role("predictor"), has_type("ordered"))
}
#' @export
#' @rdname has_role
all_string <- function() {
has_type("string")
}
#' @export
#' @rdname has_role
all_string_predictors <- function() {
intersect(has_role("predictor"), has_type("string"))
}
#' @export
#' @rdname has_role
all_unordered <- function() {
has_type("unordered")
}
#' @export
#' @rdname has_role
all_unordered_predictors <- function() {
intersect(has_role("predictor"), has_type("unordered"))
}
## functions to get current variable info for selectors modeled after
## dplyr versions
#' @import rlang
cur_info_env <- env(empty_env())
local_current_info <- function(nested_info, frame = parent.frame()) {
local_bindings(
vars = nested_info$variable,
data = nested_info$data,
.env = cur_info_env,
.frame = frame
)
}
#' @export
#' @rdname has_role
current_info <- function() {
cur_info_env %||% rlang::abort("Variable context not set")
}
|