1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
#' Filter rows by position using dplyr
#'
#' `step_slice` creates a *specification* of a recipe step
#' that will filter rows using [dplyr::slice()].
#'
#' @template row-ops
#' @inheritParams step_center
#' @param ... Integer row values. See
#' [dplyr::slice()] for more details.
#' @param inputs Quosure of values given by `...`.
#' @template step-return
#' @details When an object in the user's global environment is
#' referenced in the expression defining the new variable(s),
#' it is a good idea to use quasiquotation (e.g. `!!`)
#' to embed the value of the object in the expression (to
#' be portable between sessions). See the examples.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` which contains the filtering indices is returned.
#'
#' @template case-weights-not-supported
#'
#' @family row operation steps
#' @family dplyr steps
#' @export
#' @examples
#' rec <- recipe(~., data = iris) %>%
#' step_slice(1:3)
#'
#' prepped <- prep(rec, training = iris %>% slice(1:75))
#' tidy(prepped, number = 1)
#'
#' library(dplyr)
#'
#' dplyr_train <-
#' iris %>%
#' as_tibble() %>%
#' slice(1:75) %>%
#' slice(1:3)
#'
#' rec_train <- bake(prepped, new_data = NULL)
#' all.equal(dplyr_train, rec_train)
#'
#' dplyr_test <-
#' iris %>%
#' as_tibble() %>%
#' slice(76:150) %>%
#' slice(1:3)
#' rec_test <- bake(prepped, iris %>% slice(76:150))
#' all.equal(dplyr_test, rec_test)
#'
#' # Embedding the integer expression (or vector) into the
#' # recipe:
#'
#' keep_rows <- 1:6
#'
#' qq_rec <-
#' recipe(~., data = iris) %>%
#' # Embed `keep_rows` in the call using !!
#' step_slice(!!keep_rows) %>%
#' prep(training = iris)
#'
#' tidy(qq_rec, number = 1)
step_slice <- function(recipe, ...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = TRUE,
id = rand_id("slice")) {
inputs <- enquos(...)
add_step(
recipe,
step_slice_new(
terms = terms,
trained = trained,
role = role,
inputs = inputs,
skip = skip,
id = id
)
)
}
step_slice_new <-
function(terms, role, trained, inputs, skip, id) {
step(
subclass = "slice",
terms = terms,
role = role,
trained = trained,
inputs = inputs,
skip = skip,
id = id
)
}
#' @export
prep.step_slice <- function(x, training, info = NULL, ...) {
step_slice_new(
terms = x$terms,
trained = TRUE,
role = x$role,
inputs = x$inputs,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_slice <- function(object, new_data, ...) {
dplyr::slice(new_data, !!!object$inputs)
}
print.step_slice <-
function(x, width = max(20, options()$width - 35), ...) {
title <- "Row filtering via position "
tr_obj <- format_selectors(x$inputs, width)
print_step(tr_obj, x$inputs, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_slice <- function(x, ...) {
cond_expr <- map(x$inputs, quo_get_expr)
cond_expr <- map_chr(cond_expr, quo_text, width = options()$width, nlines = 1)
tibble(
terms = unname(cond_expr),
id = rep(x$id, length(x$inputs))
)
}
|