File: spatialsign.R

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (172 lines) | stat: -rw-r--r-- 4,935 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#' Spatial Sign Preprocessing
#'
#' `step_spatialsign` is a *specification* of a recipe
#'  step that will convert numeric data into a projection on to a
#'  unit sphere.
#'
#' @inheritParams step_pca
#' @inheritParams step_center
#' @param na_rm A logical: should missing data be removed from the
#'  norm computation?
#' @param columns A character string of variable names that will
#'  be populated (eventually) by the `terms` argument.
#' @template step-return
#' @family multivariate transformation steps
#' @export
#' @details The spatial sign transformation projects the variables
#'  onto a unit sphere and is related to global contrast
#'  normalization. The spatial sign of a vector `w` is
#'  `w/norm(w)`.
#'
#' The variables should be centered and scaled prior to the
#'  computations.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with column
#' `terms` (the columns that will be affected) is returned.
#'
#' @section Case weights:
#'
#' This step performs an unsupervised operation that can utilize case weights.
#' As a result, only frequency weights are allowed. For more
#' information, see the documentation in [case_weights] and the examples on
#' `tidymodels.org`.
#'
#' Unlike most, this step requires the case weights to be available when new
#' samples are processed (e.g., when `bake()` is used or `predict()` with a
#' workflow). To tell recipes that the case weights are required at bake time,
#' use
#' `recipe %>% update_role_requirements(role = "case_weights", bake = TRUE)`.
#' See [update_role_requirements()] for more information.
#'
#' @references Serneels, S., De Nolf, E., and Van Espen, P.
#'  (2006). Spatial sign preprocessing: a simple way to impart
#'  moderate robustness to multivariate estimators. *Journal of
#'  Chemical Information and Modeling*, 46(3), 1402-1409.
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#'   HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#'   data = biomass_tr
#' )
#'
#' ss_trans <- rec %>%
#'   step_center(carbon, hydrogen) %>%
#'   step_scale(carbon, hydrogen) %>%
#'   step_spatialsign(carbon, hydrogen)
#'
#' ss_obj <- prep(ss_trans, training = biomass_tr)
#'
#' transformed_te <- bake(ss_obj, biomass_te)
#'
#' plot(biomass_te$carbon, biomass_te$hydrogen)
#'
#' plot(transformed_te$carbon, transformed_te$hydrogen)
#'
#' tidy(ss_trans, number = 3)
#' tidy(ss_obj, number = 3)
step_spatialsign <-
  function(recipe,
           ...,
           role = "predictor",
           na_rm = TRUE,
           trained = FALSE,
           columns = NULL,
           skip = FALSE,
           id = rand_id("spatialsign")) {
    add_step(
      recipe,
      step_spatialsign_new(
        terms = enquos(...),
        role = role,
        na_rm = na_rm,
        trained = trained,
        columns = columns,
        skip = skip,
        id = id,
        case_weights = NULL
      )
    )
  }

step_spatialsign_new <-
  function(terms, role, na_rm, trained, columns, skip, id, case_weights) {
    step(
      subclass = "spatialsign",
      terms = terms,
      role = role,
      na_rm = na_rm,
      trained = trained,
      columns = columns,
      skip = skip,
      id = id,
      case_weights = case_weights
    )
  }

#' @export
prep.step_spatialsign <- function(x, training, info = NULL, ...) {
  col_names <- recipes_eval_select(x$terms, training, info)
  check_type(training[, col_names], types = c("double", "integer"))

  wts <- get_case_weights(info, training)
  were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
  if (isFALSE(were_weights_used)) {
    wts <- NULL
  }

  step_spatialsign_new(
    terms = x$terms,
    role = x$role,
    na_rm = x$na_rm,
    trained = TRUE,
    columns = col_names,
    skip = x$skip,
    id = x$id,
    case_weights = were_weights_used
  )
}

#' @export
bake.step_spatialsign <- function(object, new_data, ...) {
  check_new_data(names(object$columns), object, new_data)

  col_names <- object$columns

  if (isTRUE(object$case_weights)) {
    wts_col <- purrr::map_lgl(new_data, hardhat::is_case_weights)
    wts <- getElement(new_data, names(which(wts_col)))
    wts <- as.double(wts)
  } else {
    wts <- 1
  }

  res <- as.matrix(new_data[, col_names])
  res <- res / sqrt(rowSums((sqrt(1/wts) * res)^2, na.rm = object$na_rm))

  res <- tibble::as_tibble(res)
  new_data[, col_names] <- res
  new_data
}

print.step_spatialsign <-
  function(x, width = max(20, options()$width - 26), ...) {
    title <- "Spatial sign on  "
    print_step(x$columns, x$terms, x$trained, title, width,
               case_weights = x$case_weights)
    invisible(x)
  }

#' @rdname tidy.recipe
#' @export
tidy.step_spatialsign <- function(x, ...) {
  res <- simple_terms(x, ...)
  res$id <- x$id
  res
}