1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
#' Assign missing categories to "unknown"
#'
#' `step_unknown` creates a *specification* of a recipe
#' step that will assign a missing value in a factor level to"unknown".
#'
#' @inheritParams step_center
#' @param new_level A single character value that will be assigned
#' to new factor levels.
#' @param objects A list of objects that contain the information
#' on factor levels that will be determined by [prep()].
#' @template step-return
#' @family dummy variable and encoding steps
#' @seealso [dummy_names()]
#' @export
#' @details The selected variables are adjusted to have a new
#' level (given by `new_level`) that is placed in the last
#' position.
#'
#' Note that if the original columns are character, they will be
#' converted to factors by this step.
#'
#' If `new_level` is already in the data given to `prep`, an error
#' is thrown.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble with columns
#' `terms` (the columns that will be affected) and `value` (the factor
#' levels that is used for the new value) is returned.
#'
#' @template case-weights-not-supported
#'
#' @examplesIf rlang::is_installed("modeldata")
#' data(Sacramento, package = "modeldata")
#'
#' rec <-
#' recipe(~ city + zip, data = Sacramento) %>%
#' step_unknown(city, new_level = "unknown city") %>%
#' step_unknown(zip, new_level = "unknown zip") %>%
#' prep()
#'
#' table(bake(rec, new_data = NULL) %>% pull(city),
#' Sacramento %>% pull(city),
#' useNA = "always"
#' ) %>%
#' as.data.frame() %>%
#' dplyr::filter(Freq > 0)
#'
#' tidy(rec, number = 1)
step_unknown <-
function(recipe,
...,
role = NA,
trained = FALSE,
new_level = "unknown",
objects = NULL,
skip = FALSE,
id = rand_id("unknown")) {
add_step(
recipe,
step_unknown_new(
terms = enquos(...),
role = role,
trained = trained,
new_level = new_level,
objects = objects,
skip = skip,
id = id
)
)
}
step_unknown_new <-
function(terms, role, trained, new_level, objects, skip, id) {
step(
subclass = "unknown",
terms = terms,
role = role,
trained = trained,
new_level = new_level,
objects = objects,
skip = skip,
id = id
)
}
#' @export
prep.step_unknown <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("string", "factor", "ordered"))
# Get existing levels and their factor type (i.e. ordered)
objects <- lapply(training[, col_names], get_existing_values)
# Check to make sure that there are not duplicate levels
level_check <-
map_lgl(objects, function(x, y) y %in% x, y = x$new_level)
if (any(level_check)) {
rlang::abort(
paste0(
"Columns already contain a level '", x$new_level, "': ",
paste0(names(level_check)[level_check], collapse = ", ")
)
)
}
step_unknown_new(
terms = x$terms,
role = x$role,
trained = TRUE,
new_level = x$new_level,
objects = objects,
skip = x$skip,
id = x$id
)
}
#' @export
bake.step_unknown <- function(object, new_data, ...) {
check_new_data(names(object$objects), object, new_data)
for (i in names(object$objects)) {
new_data[[i]] <-
ifelse(is.na(new_data[[i]]), object$new_level, as.character(new_data[[i]]))
new_levels <- c(object$object[[i]], object$new_level)
if (!all(new_data[[i]] %in% new_levels)) {
warn_new_levels(
new_data[[i]],
new_levels,
paste0(
"\nNew levels will be coerced to `NA` by `step_unknown()`.",
"\nConsider using `step_novel()` before `step_unknown()`."
)
)
}
new_data[[i]] <-
factor(new_data[[i]],
levels = new_levels,
ordered = attributes(object$object[[i]])$is_ordered
)
}
new_data
}
print.step_unknown <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Unknown factor level assignment for "
print_step(names(x$objects), x$terms, x$trained, title, width)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_unknown <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$objects),
value = rep(x$new_level, length(x$objects))
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
value = rep(x$new_level, length(term_names))
)
}
res$id <- x$id
res
}
|