File: bake.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (83 lines) | stat: -rw-r--r-- 3,367 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/recipe.R
\name{bake}
\alias{bake}
\alias{bake.recipe}
\title{Apply a trained preprocessing recipe}
\usage{
bake(object, ...)

\method{bake}{recipe}(object, new_data, ..., composition = "tibble")
}
\arguments{
\item{object}{A trained object such as a \code{\link[=recipe]{recipe()}} with at least
one preprocessing operation.}

\item{...}{One or more selector functions to choose which variables will be
returned by the function. See \code{\link[=selections]{selections()}} for more details.
If no selectors are given, the default is to use
\code{\link[=everything]{everything()}}.}

\item{new_data}{A data frame or tibble for whom the preprocessing will be
applied. If \code{NULL} is given to \code{new_data}, the pre-processed \emph{training
data} will be returned (assuming that \code{prep(retain = TRUE)} was used).}

\item{composition}{Either "tibble", "matrix", "data.frame", or
"dgCMatrix" for the format of the processed data set. Note that
all computations during the baking process are done in a
non-sparse format. Also, note that this argument should be
called \strong{after} any selectors and the selectors should only
resolve to numeric columns (otherwise an error is thrown).}
}
\value{
A tibble, matrix, or sparse matrix that may have different
columns than the original columns in \code{new_data}.
}
\description{
For a recipe with at least one preprocessing operation that has been trained by
\code{\link[=prep]{prep()}}, apply the computations to new data.
}
\details{
\code{\link[=bake]{bake()}} takes a trained recipe and applies its operations to a
data set to create a design matrix. If you are using a recipe as a
preprocessor for modeling, we \strong{highly recommend} that you use a \code{workflow()}
instead of manually applying a recipe (see the example in \code{\link[=recipe]{recipe()}}).

If the data set is not too large, time can be saved by using the
\code{retain = TRUE} option of \code{\link[=prep]{prep()}}. This stores the processed version of the
training set. With this option set, \code{bake(object, new_data = NULL)}
will return it for free.

Also, any steps with \code{skip = TRUE} will not be applied to the
data when \code{\link[=bake]{bake()}} is invoked with a data set in \code{new_data}.
\code{bake(object, new_data = NULL)} will always have all of the steps applied.
}
\examples{
\dontshow{if (rlang::is_installed("modeldata")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
data(ames, package = "modeldata")

ames <- mutate(ames, Sale_Price = log10(Sale_Price))

ames_rec <-
  recipe(Sale_Price ~ ., data = ames[-(1:6), ]) \%>\%
  step_other(Neighborhood, threshold = 0.05) \%>\%
  step_dummy(all_nominal()) \%>\%
  step_interact(~ starts_with("Central_Air"):Year_Built) \%>\%
  step_ns(Longitude, Latitude, deg_free = 2) \%>\%
  step_zv(all_predictors()) \%>\%
  prep()

# return the training set (already embedded in ames_rec)
bake(ames_rec, new_data = NULL)

# apply processing to other data:
bake(ames_rec, new_data = head(ames))

# only return selected variables:
bake(ames_rec, new_data = head(ames), all_numeric_predictors())
bake(ames_rec, new_data = head(ames), starts_with(c("Longitude", "Latitude")))
\dontshow{\}) # examplesIf}
}
\seealso{
\code{\link[=recipe]{recipe()}}, \code{\link[=prep]{prep()}}
}