File: check_class.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (131 lines) | stat: -rw-r--r-- 4,248 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/class.R
\name{check_class}
\alias{check_class}
\title{Check Variable Class}
\usage{
check_class(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  class_nm = NULL,
  allow_additional = FALSE,
  skip = FALSE,
  class_list = NULL,
  id = rand_id("class")
)
}
\arguments{
\item{recipe}{A recipe object. The check will be added to the
sequence of operations for this recipe.}

\item{...}{One or more selector functions to choose variables
for this check. See \code{\link[=selections]{selections()}} for more details.}

\item{role}{Not used by this check since no new variables are
created.}

\item{trained}{A logical for whether the selectors in \code{...}
have been resolved by \code{\link[=prep]{prep()}}.}

\item{class_nm}{A character vector that will be used in \code{inherits} to
check the class. If \code{NULL} the classes will be learned in \code{prep}.
Can contain more than one class.}

\item{allow_additional}{If \code{TRUE} a variable is allowed to
have additional classes to the one(s) that are checked.}

\item{skip}{A logical. Should the check be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}

\item{class_list}{A named list of column classes. This is
\code{NULL} until computed by \code{\link[=prep]{prep()}}.}

\item{id}{A character string that is unique to this check to identify it.}
}
\value{
An updated version of \code{recipe} with the new check added to the
sequence of any existing operations.
}
\description{
\code{check_class} creates a \emph{specification} of a recipe
check that will check if a variable is of a designated class.
}
\details{
This function can check the classes of the variables
in two ways. When the \code{class} argument is provided
it will check if all the variables specified are of the
given class. If this argument is \code{NULL}, the check will
learn the classes of each of the specified variables in \code{prep}.
Both ways will break \code{bake} if the variables are not of
the requested class. If a variable has multiple
classes in \code{prep}, all the classes are checked. Please note
that in \code{prep} the argument \code{strings_as_factors} defaults to
\code{TRUE}. If the train set contains character variables
the check will be break \code{bake} when \code{strings_as_factors} is
\code{TRUE}.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this check, a tibble with columns
\code{terms} (the selectors or variables selected) and \code{value} (the type)
is returned.
}

\section{Case weights}{


The underlying operation does not allow for case weights.
}

\examples{
\dontshow{if (rlang::is_installed("modeldata")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
library(dplyr)
data(Sacramento, package = "modeldata")

# Learn the classes on the train set
train <- Sacramento[1:500, ]
test <- Sacramento[501:nrow(Sacramento), ]
recipe(train, sqft ~ .) \%>\%
  check_class(everything()) \%>\%
  prep(train, strings_as_factors = FALSE) \%>\%
  bake(test)

# Manual specification
recipe(train, sqft ~ .) \%>\%
  check_class(sqft, class_nm = "integer") \%>\%
  check_class(city, zip, type, class_nm = "factor") \%>\%
  check_class(latitude, longitude, class_nm = "numeric") \%>\%
  prep(train, strings_as_factors = FALSE) \%>\%
  bake(test)

# By default only the classes that are specified
#   are allowed.
x_df <- tibble(time = c(Sys.time() - 60, Sys.time()))
x_df$time \%>\% class()
\dontrun{
recipe(x_df) \%>\%
  check_class(time, class_nm = "POSIXt") \%>\%
  prep(x_df) \%>\%
  bake_(x_df)
}

# Use allow_additional = TRUE if you are fine with it
recipe(x_df) \%>\%
  check_class(time, class_nm = "POSIXt", allow_additional = TRUE) \%>\%
  prep(x_df) \%>\%
  bake(x_df)
\dontshow{\}) # examplesIf}
}
\seealso{
Other checks: 
\code{\link{check_cols}()},
\code{\link{check_missing}()},
\code{\link{check_new_values}()},
\code{\link{check_range}()}
}
\concept{checks}