File: check_type.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (31 lines) | stat: -rw-r--r-- 1,202 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/misc.R
\name{check_type}
\alias{check_type}
\title{Quantitatively check on variables}
\usage{
check_type(dat, quant = TRUE, types = NULL, call = caller_env())
}
\arguments{
\item{dat}{A data frame or tibble of the training data.}

\item{quant}{A logical indicating whether the data is expected to be numeric
(TRUE) or a factor/character (FALSE). Is ignored if \code{types} is specified.}

\item{types}{Character vector of allowed types. Following the same types as
\code{\link[=has_role]{has_role()}}. See details for more.}
}
\description{
This internal function is to be used in the prep function to ensure that
the type of the variables matches the expectation. Throws an error if
check fails.
}
\details{
Using \code{types} is a more fine-tuned way to use this. function compared to using
\code{quant}. \code{types} should specify all allowed types as designated by
\link{.get_data_types}. Suppose you want to allow doubles, integers, characters,
factors and ordered factors, then you should specify
\code{types = c("double", "integer", "string", "factor", "ordered")} to get a
clear error message.
}
\keyword{internal}