1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/selections.R
\name{has_role}
\alias{has_role}
\alias{has_type}
\alias{all_outcomes}
\alias{all_predictors}
\alias{all_date}
\alias{all_date_predictors}
\alias{all_datetime}
\alias{all_datetime_predictors}
\alias{all_double}
\alias{all_double_predictors}
\alias{all_factor}
\alias{all_factor_predictors}
\alias{all_integer}
\alias{all_integer_predictors}
\alias{all_logical}
\alias{all_logical_predictors}
\alias{all_nominal}
\alias{all_nominal_predictors}
\alias{all_numeric}
\alias{all_numeric_predictors}
\alias{all_ordered}
\alias{all_ordered_predictors}
\alias{all_string}
\alias{all_string_predictors}
\alias{all_unordered}
\alias{all_unordered_predictors}
\alias{current_info}
\title{Role Selection}
\usage{
has_role(match = "predictor")
has_type(match = "numeric")
all_outcomes()
all_predictors()
all_date()
all_date_predictors()
all_datetime()
all_datetime_predictors()
all_double()
all_double_predictors()
all_factor()
all_factor_predictors()
all_integer()
all_integer_predictors()
all_logical()
all_logical_predictors()
all_nominal()
all_nominal_predictors()
all_numeric()
all_numeric_predictors()
all_ordered()
all_ordered_predictors()
all_string()
all_string_predictors()
all_unordered()
all_unordered_predictors()
current_info()
}
\arguments{
\item{match}{A single character string for the query. Exact
matching is used (i.e. regular expressions won't work).}
}
\value{
Selector functions return an integer vector.
\code{current_info()} returns an environment with objects \code{vars} and \code{data}.
}
\description{
\code{has_role()}, \code{all_predictors()}, and \code{all_outcomes()} can be used to
select variables in a formula that have certain roles.
\strong{In most cases}, the right approach for users will be use to use the
predictor-specific selectors such as \code{all_numeric_predictors()} and
\code{all_nominal_predictors()}. In general you should be careful about using
\code{-all_outcomes()} if a \verb{*_predictors()} selector would do what you want.
Similarly, \code{has_type()}, \code{all_numeric()}, \code{all_integer()}, \code{all_double()},
\code{all_nominal()}, \code{all_ordered()}, \code{all_unordered()}, \code{all_factor()},
\code{all_string()}, \code{all_date()} and \code{all_datetime()} are used to select columns
based on their data type.
\code{all_factor()} captures ordered and unordered factors, \code{all_string()}
captures characters, \code{all_unordered()} captures unordered factors and
characters, \code{all_ordered()} captures ordered factors, \code{all_nominal()}
captures characters, unordered and ordered factors.
\code{all_integer()} captures integers, \code{all_double()} captures doubles,
\code{all_numeric()} captures all kinds of numeric.
\code{all_date()} captures \code{\link[=Date]{Date()}} variables, \code{all_datetime()} captures
\code{\link[=POSIXct]{POSIXct()}} variables.
See \link{selections} for more details.
\code{current_info()} is an internal function.
All of these functions have have limited utility outside of column selection
in step functions.
}
\examples{
\dontshow{if (rlang::is_installed("modeldata")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
data(biomass, package = "modeldata")
rec <- recipe(biomass) \%>\%
update_role(
carbon, hydrogen, oxygen, nitrogen, sulfur,
new_role = "predictor"
) \%>\%
update_role(HHV, new_role = "outcome") \%>\%
update_role(sample, new_role = "id variable") \%>\%
update_role(dataset, new_role = "splitting indicator")
recipe_info <- summary(rec)
recipe_info
# Centering on all predictors except carbon
rec \%>\%
step_center(all_predictors(), -carbon) \%>\%
prep(training = biomass) \%>\%
bake(new_data = NULL)
\dontshow{\}) # examplesIf}
}
|