File: step_dummy_extract.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (187 lines) | stat: -rw-r--r-- 6,402 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/extract.R
\name{step_dummy_extract}
\alias{step_dummy_extract}
\title{Extract patterns from nominal data}
\usage{
step_dummy_extract(
  recipe,
  ...,
  role = "predictor",
  trained = FALSE,
  sep = NULL,
  pattern = NULL,
  threshold = 0,
  other = "other",
  naming = dummy_extract_names,
  levels = NULL,
  keep_original_cols = FALSE,
  skip = FALSE,
  id = rand_id("dummy_extract")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}

\item{role}{Not used by this step since no new variables are
created.}

\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}

\item{sep}{Character vector containing a regular expression to use
for splitting. \code{\link[=strsplit]{strsplit()}} is used to perform the split. \code{sep} takes
priority if \code{pattern} is also specified.}

\item{pattern}{Character vector containing a regular expression used
for extraction. \code{\link[=gregexpr]{gregexpr()}} and \code{\link[=regmatches]{regmatches()}} are used to perform
pattern extraction using \code{perl = TRUE}.}

\item{threshold}{A numeric value between 0 and 1, or an integer greater or
equal to one.  If less than one, then factor levels with a rate of
occurrence in the training set below \code{threshold} will be pooled to \code{other}.
If greater or equal to one, then this value is treated as a frequency
and factor levels that occur less than \code{threshold} times will be pooled
to \code{other}.}

\item{other}{A single character value for the "other" category.}

\item{naming}{A function that defines the naming convention for
new dummy columns. See Details below.}

\item{levels}{A list that contains the information needed to
create dummy variables for each variable contained in
\code{terms}. This is \code{NULL} until the step is trained by
\code{\link[=prep]{prep()}}.}

\item{keep_original_cols}{A logical to keep the original variables in the
output. Defaults to \code{FALSE}.}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}

\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_dummy_extract()} creates a \emph{specification} of a recipe
step that will convert nominal data (e.g. character or factors)
into one or more integer model terms for the extracted levels.
}
\details{
\code{step_dummy_extract()} will create a set of integer dummy
variables from a character variable by extract individual strings
by either splitting or extracting then counting those to create
count variables.

Note that \code{threshold} works in a very specific way for this step.
While it is possible for one label to be present multiple times in
the same row, it will only be counted once when calculating the
occurrences and frequencies.

This recipe step allows for flexible naming of the resulting
variables. For an unordered factor named \code{x}, with levels \code{"a"}
and \code{"b"}, the default naming convention would be to create a
new variable called \code{x_b}. The naming format can be changed using
the \code{naming} argument; the function \code{\link[=dummy_names]{dummy_names()}} is the
default.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with columns
\code{terms} (the selectors or original variables selected) and \code{columns}
(the list of corresponding columns) is returned. The \code{columns} is
is ordered according the frequency in the training data set.
}

\section{Case weights}{


This step performs an unsupervised operation that can utilize case weights.
As a result, case weights are only used with frequency weights. For more
information, see the documentation in \link{case_weights} and the examples on
\code{tidymodels.org}.
}

\examples{
\dontshow{if (rlang::is_installed("modeldata")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
data(tate_text, package = "modeldata")

dummies <- recipe(~ artist + medium, data = tate_text) \%>\%
  step_dummy_extract(artist, medium, sep = ", ") \%>\%
  prep()

dummy_data <- bake(dummies, new_data = NULL)

dummy_data \%>\%
  select(starts_with("medium")) \%>\%
  names()

# More detailed splitting
dummies_specific <- recipe(~medium, data = tate_text) \%>\%
  step_dummy_extract(medium, sep = "(, )|( and )|( on )") \%>\%
  prep()

dummy_data_specific <- bake(dummies_specific, new_data = NULL)

dummy_data_specific \%>\%
  select(starts_with("medium")) \%>\%
  names()

tidy(dummies, number = 1)
tidy(dummies_specific, number = 1)

# pattern argument can be useful to extract harder patterns
color_examples <- tibble(
  colors = c(
    "['red', 'blue']",
    "['red', 'blue', 'white']",
    "['blue', 'blue', 'blue']"
  )
)

dummies_color <- recipe(~colors, data = color_examples) \%>\%
  step_dummy_extract(colors, pattern = "(?<=')[^',]+(?=')") \%>\%
  prep()

dommies_data_color <- dummies_color \%>\%
  bake(new_data = NULL)

dommies_data_color
\dontshow{\}) # examplesIf}
}
\seealso{
\code{\link[=dummy_extract_names]{dummy_extract_names()}}

Other dummy variable and encoding steps: 
\code{\link{step_bin2factor}()},
\code{\link{step_count}()},
\code{\link{step_date}()},
\code{\link{step_dummy_multi_choice}()},
\code{\link{step_dummy}()},
\code{\link{step_factor2string}()},
\code{\link{step_holiday}()},
\code{\link{step_indicate_na}()},
\code{\link{step_integer}()},
\code{\link{step_novel}()},
\code{\link{step_num2factor}()},
\code{\link{step_ordinalscore}()},
\code{\link{step_other}()},
\code{\link{step_regex}()},
\code{\link{step_relevel}()},
\code{\link{step_string2factor}()},
\code{\link{step_time}()},
\code{\link{step_unknown}()},
\code{\link{step_unorder}()}
}
\concept{dummy variable and encoding steps}