1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/extract.R
\name{step_dummy_extract}
\alias{step_dummy_extract}
\title{Extract patterns from nominal data}
\usage{
step_dummy_extract(
recipe,
...,
role = "predictor",
trained = FALSE,
sep = NULL,
pattern = NULL,
threshold = 0,
other = "other",
naming = dummy_extract_names,
levels = NULL,
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("dummy_extract")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}
\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}
\item{role}{Not used by this step since no new variables are
created.}
\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}
\item{sep}{Character vector containing a regular expression to use
for splitting. \code{\link[=strsplit]{strsplit()}} is used to perform the split. \code{sep} takes
priority if \code{pattern} is also specified.}
\item{pattern}{Character vector containing a regular expression used
for extraction. \code{\link[=gregexpr]{gregexpr()}} and \code{\link[=regmatches]{regmatches()}} are used to perform
pattern extraction using \code{perl = TRUE}.}
\item{threshold}{A numeric value between 0 and 1, or an integer greater or
equal to one. If less than one, then factor levels with a rate of
occurrence in the training set below \code{threshold} will be pooled to \code{other}.
If greater or equal to one, then this value is treated as a frequency
and factor levels that occur less than \code{threshold} times will be pooled
to \code{other}.}
\item{other}{A single character value for the "other" category.}
\item{naming}{A function that defines the naming convention for
new dummy columns. See Details below.}
\item{levels}{A list that contains the information needed to
create dummy variables for each variable contained in
\code{terms}. This is \code{NULL} until the step is trained by
\code{\link[=prep]{prep()}}.}
\item{keep_original_cols}{A logical to keep the original variables in the
output. Defaults to \code{FALSE}.}
\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}
\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_dummy_extract()} creates a \emph{specification} of a recipe
step that will convert nominal data (e.g. character or factors)
into one or more integer model terms for the extracted levels.
}
\details{
\code{step_dummy_extract()} will create a set of integer dummy
variables from a character variable by extract individual strings
by either splitting or extracting then counting those to create
count variables.
Note that \code{threshold} works in a very specific way for this step.
While it is possible for one label to be present multiple times in
the same row, it will only be counted once when calculating the
occurrences and frequencies.
This recipe step allows for flexible naming of the resulting
variables. For an unordered factor named \code{x}, with levels \code{"a"}
and \code{"b"}, the default naming convention would be to create a
new variable called \code{x_b}. The naming format can be changed using
the \code{naming} argument; the function \code{\link[=dummy_names]{dummy_names()}} is the
default.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with columns
\code{terms} (the selectors or original variables selected) and \code{columns}
(the list of corresponding columns) is returned. The \code{columns} is
is ordered according the frequency in the training data set.
}
\section{Case weights}{
This step performs an unsupervised operation that can utilize case weights.
As a result, case weights are only used with frequency weights. For more
information, see the documentation in \link{case_weights} and the examples on
\code{tidymodels.org}.
}
\examples{
\dontshow{if (rlang::is_installed("modeldata")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
data(tate_text, package = "modeldata")
dummies <- recipe(~ artist + medium, data = tate_text) \%>\%
step_dummy_extract(artist, medium, sep = ", ") \%>\%
prep()
dummy_data <- bake(dummies, new_data = NULL)
dummy_data \%>\%
select(starts_with("medium")) \%>\%
names()
# More detailed splitting
dummies_specific <- recipe(~medium, data = tate_text) \%>\%
step_dummy_extract(medium, sep = "(, )|( and )|( on )") \%>\%
prep()
dummy_data_specific <- bake(dummies_specific, new_data = NULL)
dummy_data_specific \%>\%
select(starts_with("medium")) \%>\%
names()
tidy(dummies, number = 1)
tidy(dummies_specific, number = 1)
# pattern argument can be useful to extract harder patterns
color_examples <- tibble(
colors = c(
"['red', 'blue']",
"['red', 'blue', 'white']",
"['blue', 'blue', 'blue']"
)
)
dummies_color <- recipe(~colors, data = color_examples) \%>\%
step_dummy_extract(colors, pattern = "(?<=')[^',]+(?=')") \%>\%
prep()
dommies_data_color <- dummies_color \%>\%
bake(new_data = NULL)
dommies_data_color
\dontshow{\}) # examplesIf}
}
\seealso{
\code{\link[=dummy_extract_names]{dummy_extract_names()}}
Other dummy variable and encoding steps:
\code{\link{step_bin2factor}()},
\code{\link{step_count}()},
\code{\link{step_date}()},
\code{\link{step_dummy_multi_choice}()},
\code{\link{step_dummy}()},
\code{\link{step_factor2string}()},
\code{\link{step_holiday}()},
\code{\link{step_indicate_na}()},
\code{\link{step_integer}()},
\code{\link{step_novel}()},
\code{\link{step_num2factor}()},
\code{\link{step_ordinalscore}()},
\code{\link{step_other}()},
\code{\link{step_regex}()},
\code{\link{step_relevel}()},
\code{\link{step_string2factor}()},
\code{\link{step_time}()},
\code{\link{step_unknown}()},
\code{\link{step_unorder}()}
}
\concept{dummy variable and encoding steps}
|