1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/filter.R
\name{step_filter}
\alias{step_filter}
\title{Filter rows using dplyr}
\usage{
step_filter(
recipe,
...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = TRUE,
id = rand_id("filter")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}
\item{...}{Logical predicates defined in terms of the variables
in the data. Multiple conditions are combined with \code{&}. Only
rows where the condition evaluates to \code{TRUE} are kept. See
\code{\link[dplyr:filter]{dplyr::filter()}} for more details.}
\item{role}{Not used by this step since no new variables are
created.}
\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}
\item{inputs}{Quosure of values given by \code{...}.}
\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = FALSE}.}
\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_filter} creates a \emph{specification} of a recipe step
that will remove rows using \code{\link[dplyr:filter]{dplyr::filter()}}.
}
\details{
When an object in the user's global environment is
referenced in the expression defining the new variable(s),
it is a good idea to use quasiquotation (e.g. \verb{!!}) to embed
the value of the object in the expression (to be portable
between sessions). See the examples.
}
\section{Row Filtering}{
This step can entirely remove observations (rows of data), which can have
unintended and/or problematic consequences when applying the step to new
data later via \code{\link[=bake]{bake()}}. Consider whether \code{skip = TRUE} or
\code{skip = FALSE} is more appropriate in any given use case. In most instances
that affect the rows of the data being predicted, this step probably should
not be applied at all; instead, execute operations like this outside and
before starting a preprocessing \code{\link[=recipe]{recipe()}}.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with column
\code{terms} which contains the conditional statements is returned.
These expressions are text representations and are not parsable.
}
\section{Case weights}{
The underlying operation does not allow for case weights.
}
\examples{
rec <- recipe(~., data = iris) \%>\%
step_filter(Sepal.Length > 4.5, Species == "setosa")
prepped <- prep(rec, training = iris \%>\% slice(1:75))
library(dplyr)
dplyr_train <-
iris \%>\%
as_tibble() \%>\%
slice(1:75) \%>\%
dplyr::filter(Sepal.Length > 4.5, Species == "setosa")
rec_train <- bake(prepped, new_data = NULL)
all.equal(dplyr_train, rec_train)
dplyr_test <-
iris \%>\%
as_tibble() \%>\%
slice(76:150) \%>\%
dplyr::filter(Sepal.Length > 4.5, Species != "setosa")
rec_test <- bake(prepped, iris \%>\% slice(76:150))
all.equal(dplyr_test, rec_test)
values <- c("versicolor", "virginica")
qq_rec <-
recipe(~., data = iris) \%>\%
# Embed the `values` object in the call using !!
step_filter(Sepal.Length > 4.5, Species \%in\% !!values)
tidy(qq_rec, number = 1)
}
\seealso{
Other row operation steps:
\code{\link{step_arrange}()},
\code{\link{step_impute_roll}()},
\code{\link{step_lag}()},
\code{\link{step_naomit}()},
\code{\link{step_sample}()},
\code{\link{step_shuffle}()},
\code{\link{step_slice}()}
Other dplyr steps:
\code{\link{step_arrange}()},
\code{\link{step_mutate_at}()},
\code{\link{step_mutate}()},
\code{\link{step_rename_at}()},
\code{\link{step_rename}()},
\code{\link{step_sample}()},
\code{\link{step_select}()},
\code{\link{step_slice}()}
}
\concept{dplyr steps}
\concept{row operation steps}
|