File: step_filter_missing.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (106 lines) | stat: -rw-r--r-- 3,468 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/filter_missing.R
\name{step_filter_missing}
\alias{step_filter_missing}
\title{Missing Value Column Filter}
\usage{
step_filter_missing(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  threshold = 0.1,
  removals = NULL,
  skip = FALSE,
  id = rand_id("filter_missing")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}

\item{role}{Not used by this step since no new variables are
created.}

\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}

\item{threshold}{A value for the threshold of missing values in column. The
step will remove the columns where the proportion of missing values
exceeds the threshold.}

\item{removals}{A character string that contains the names of
columns that should be removed. These values are not determined
until \code{\link[=prep]{prep()}} is called.}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}

\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_filter_missing} creates a \emph{specification} of a recipe
step that will potentially remove variables that have too many missing
values.
}
\details{
This step can potentially remove columns from the data set. This may
cause issues for subsequent steps in your recipe if the missing columns are
specifically referenced by name. To avoid this, see the advice in the
\emph{Tips for saving recipes and filtering columns} section of \link{selections}.

This step will remove variables if the proportion of missing
values exceeds the \code{threshold}.

All variables with missing values will be removed for \code{threshold = 0}.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with column
\code{terms} (the columns that will be removed) is returned.
}

\section{Case weights}{


This step performs an unsupervised operation that can utilize case weights.
As a result, case weights are only used with frequency weights. For more
information, see the documentation in \link{case_weights} and the examples on
\code{tidymodels.org}.
}

\examples{
\dontshow{if (rlang::is_installed("modeldata")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
data(credit_data, package = "modeldata")

rec <- recipe(Status ~ ., data = credit_data) \%>\%
  step_filter_missing(all_predictors(), threshold = 0)

filter_obj <- prep(rec)

filtered_te <- bake(filter_obj, new_data = NULL)

tidy(rec, number = 1)
tidy(filter_obj, number = 1)
\dontshow{\}) # examplesIf}
}
\seealso{
Other variable filter steps: 
\code{\link{step_corr}()},
\code{\link{step_lincomb}()},
\code{\link{step_nzv}()},
\code{\link{step_rm}()},
\code{\link{step_select}()},
\code{\link{step_zv}()}
}
\concept{variable filter steps}