1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/ica.R
\name{step_ica}
\alias{step_ica}
\title{ICA Signal Extraction}
\usage{
step_ica(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
options = list(method = "C"),
seed = sample.int(10000, 5),
res = NULL,
columns = NULL,
prefix = "IC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("ica")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}
\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}
\item{role}{For model terms created by this step, what analysis role should
they be assigned? By default, the new columns created by this step from
the original variables will be used as \emph{predictors} in a model.}
\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}
\item{num_comp}{The number of components to retain as new predictors.
If \code{num_comp} is greater than the number of columns or the number of
possible components, a smaller value will be used. If \code{num_comp = 0}
is set then no transformation is done and selected variables will
stay unchanged.}
\item{options}{A list of options to
\code{\link[fastICA:fastICA]{fastICA::fastICA()}}. No defaults are set here.
\strong{Note} that the arguments \code{X} and \code{n.comp} should
not be passed here.}
\item{seed}{A single integer to set the random number stream prior to
running ICA.}
\item{res}{The \code{\link[fastICA:fastICA]{fastICA::fastICA()}} object is stored
here once this preprocessing step has be trained by
\code{\link[=prep]{prep()}}.}
\item{columns}{A character string of variable names that will
be populated elsewhere.}
\item{prefix}{A character string for the prefix of the resulting new
variables. See notes below.}
\item{keep_original_cols}{A logical to keep the original variables in the
output. Defaults to \code{FALSE}.}
\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}
\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_ica} creates a \emph{specification} of a recipe step
that will convert numeric data into one or more independent
components.
}
\details{
Independent component analysis (ICA) is a
transformation of a group of variables that produces a new set
of artificial features or components. ICA assumes that the
variables are mixtures of a set of distinct, non-Gaussian
signals and attempts to transform the data to isolate these
signals. Like PCA, the components are statistically independent
from one another. This means that they can be used to combat
large inter-variables correlations in a data set. Also like PCA,
it is advisable to center and scale the variables prior to
running ICA.
This package produces components using the "FastICA"
methodology (see reference below). This step requires the
\pkg{dimRed} and \pkg{fastICA} packages. If not installed, the
step will stop with a note about installing these packages.
The argument \code{num_comp} controls the number of components that
will be retained (the original variables that are used to derive
the components are removed from the data). The new components
will have names that begin with \code{prefix} and a sequence of
numbers. The variable names are padded with zeros. For example,
if \code{num_comp < 10}, their names will be \code{IC1} - \code{IC9}.
If \code{num_comp = 101}, the names would be \code{IC001} -
\code{IC101}.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with columns
\code{terms} (the selectors or variables selected), \code{value} (the loading),
and \code{component} is returned.
}
\section{Case weights}{
The underlying operation does not allow for case weights.
}
\examples{
\dontshow{if (FALSE) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
# from fastICA::fastICA
set.seed(131)
S <- matrix(runif(400), 200, 2)
A <- matrix(c(1, 1, -1, 3), 2, 2, byrow = TRUE)
X <- as.data.frame(S \%*\% A)
tr <- X[1:100, ]
te <- X[101:200, ]
rec <- recipe(~., data = tr)
ica_trans <- step_center(rec, V1, V2)
ica_trans <- step_scale(ica_trans, V1, V2)
ica_trans <- step_ica(ica_trans, V1, V2, num_comp = 2)
ica_estimates <- prep(ica_trans, training = tr)
ica_data <- bake(ica_estimates, te)
plot(te$V1, te$V2)
plot(ica_data$IC1, ica_data$IC2)
tidy(ica_trans, number = 3)
tidy(ica_estimates, number = 3)
\dontshow{\}) # examplesIf}
}
\references{
Hyvarinen, A., and Oja, E. (2000). Independent
component analysis: algorithms and applications. \emph{Neural
Networks}, 13(4-5), 411-430.
}
\seealso{
Other multivariate transformation steps:
\code{\link{step_classdist}()},
\code{\link{step_depth}()},
\code{\link{step_geodist}()},
\code{\link{step_isomap}()},
\code{\link{step_kpca_poly}()},
\code{\link{step_kpca_rbf}()},
\code{\link{step_kpca}()},
\code{\link{step_mutate_at}()},
\code{\link{step_nnmf_sparse}()},
\code{\link{step_nnmf}()},
\code{\link{step_pca}()},
\code{\link{step_pls}()},
\code{\link{step_ratio}()},
\code{\link{step_spatialsign}()}
}
\concept{multivariate transformation steps}
|