File: step_impute_lower.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (130 lines) | stat: -rw-r--r-- 3,950 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/impute_lower.R
\name{step_impute_lower}
\alias{step_impute_lower}
\alias{step_lowerimpute}
\title{Impute numeric data below the threshold of measurement}
\usage{
step_impute_lower(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  threshold = NULL,
  skip = FALSE,
  id = rand_id("impute_lower")
)

step_lowerimpute(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  threshold = NULL,
  skip = FALSE,
  id = rand_id("impute_lower")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}

\item{role}{Not used by this step since no new variables are
created.}

\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}

\item{threshold}{A named numeric vector of lower bounds. This is
\code{NULL} until computed by \code{\link[=prep]{prep()}}.}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}

\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_impute_lower} creates a \emph{specification} of a recipe step
designed for cases where the non-negative numeric data cannot be
measured below a known value. In these cases, one method for
imputing the data is to substitute the truncated value by a
random uniform number between zero and the truncation point.
}
\details{
\code{step_impute_lower} estimates the variable minimums
from the data used in the \code{training} argument of \code{prep.recipe}.
\code{bake.recipe} then simulates a value for any data at the minimum
with a random uniform value between zero and the minimum.

As of \code{recipes} 0.1.16, this function name changed from \code{step_lowerimpute()}
to \code{step_impute_lower()}.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with columns
\code{terms} (the selectors or variables selected) and \code{value} for the
estimated threshold is returned.
}

\section{Case weights}{


The underlying operation does not allow for case weights.
}

\examples{
\dontshow{if (rlang::is_installed("modeldata")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
library(recipes)
data(biomass, package = "modeldata")

## Truncate some values to emulate what a lower limit of
## the measurement system might look like

biomass$carbon <- ifelse(biomass$carbon > 40, biomass$carbon, 40)
biomass$hydrogen <- ifelse(biomass$hydrogen > 5, biomass$carbon, 5)

biomass_tr <- biomass[biomass$dataset == "Training", ]
biomass_te <- biomass[biomass$dataset == "Testing", ]

rec <- recipe(
  HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
  data = biomass_tr
)

impute_rec <- rec \%>\%
  step_impute_lower(carbon, hydrogen)

tidy(impute_rec, number = 1)

impute_rec <- prep(impute_rec, training = biomass_tr)

tidy(impute_rec, number = 1)

transformed_te <- bake(impute_rec, biomass_te)

plot(transformed_te$carbon, biomass_te$carbon,
  ylab = "pre-imputation", xlab = "imputed"
)
\dontshow{\}) # examplesIf}
}
\seealso{
Other imputation steps: 
\code{\link{step_impute_bag}()},
\code{\link{step_impute_knn}()},
\code{\link{step_impute_linear}()},
\code{\link{step_impute_mean}()},
\code{\link{step_impute_median}()},
\code{\link{step_impute_mode}()},
\code{\link{step_impute_roll}()}
}
\concept{imputation steps}