File: step_impute_mode.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (131 lines) | stat: -rw-r--r-- 3,978 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/impute_mode.R
\name{step_impute_mode}
\alias{step_impute_mode}
\alias{step_modeimpute}
\title{Impute nominal data using the most common value}
\usage{
step_impute_mode(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  modes = NULL,
  ptype = NULL,
  skip = FALSE,
  id = rand_id("impute_mode")
)

step_modeimpute(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  modes = NULL,
  ptype = NULL,
  skip = FALSE,
  id = rand_id("impute_mode")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}

\item{role}{Not used by this step since no new variables are
created.}

\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}

\item{modes}{A named character vector of modes. This is
\code{NULL} until computed by \code{\link[=prep]{prep()}}.}

\item{ptype}{A data frame prototype to cast new data sets to. This is
commonly a 0-row slice of the training set.}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}

\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_impute_mode} creates a \emph{specification} of a
recipe step that will substitute missing values of nominal
variables by the training set mode of those variables.
}
\details{
\code{step_impute_mode} estimates the variable modes
from the data used in the \code{training} argument of
\code{prep.recipe}. \code{bake.recipe} then applies the new
values to new data sets using these values. If the training set
data has more than one mode, one is selected at random.

As of \code{recipes} 0.1.16, this function name changed from \code{step_modeimpute()}
to \code{step_impute_mode()}.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with columns
\code{terms} (the selectors or variables selected) and \code{model} (the mode
value) is returned.
}

\section{Case weights}{


This step performs an unsupervised operation that can utilize case weights.
As a result, case weights are only used with frequency weights. For more
information, see the documentation in \link{case_weights} and the examples on
\code{tidymodels.org}.
}

\examples{
\dontshow{if (rlang::is_installed("modeldata")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
data("credit_data", package = "modeldata")

## missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))

set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)

credit_tr <- credit_data[in_training, ]
credit_te <- credit_data[-in_training, ]
missing_examples <- c(14, 394, 565)

rec <- recipe(Price ~ ., data = credit_tr)

impute_rec <- rec \%>\%
  step_impute_mode(Status, Home, Marital)

imp_models <- prep(impute_rec, training = credit_tr)

imputed_te <- bake(imp_models, new_data = credit_te, everything())

table(credit_te$Home, imputed_te$Home, useNA = "always")

tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)
\dontshow{\}) # examplesIf}
}
\seealso{
Other imputation steps: 
\code{\link{step_impute_bag}()},
\code{\link{step_impute_knn}()},
\code{\link{step_impute_linear}()},
\code{\link{step_impute_lower}()},
\code{\link{step_impute_mean}()},
\code{\link{step_impute_median}()},
\code{\link{step_impute_roll}()}
}
\concept{imputation steps}