1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/impute_mode.R
\name{step_impute_mode}
\alias{step_impute_mode}
\alias{step_modeimpute}
\title{Impute nominal data using the most common value}
\usage{
step_impute_mode(
recipe,
...,
role = NA,
trained = FALSE,
modes = NULL,
ptype = NULL,
skip = FALSE,
id = rand_id("impute_mode")
)
step_modeimpute(
recipe,
...,
role = NA,
trained = FALSE,
modes = NULL,
ptype = NULL,
skip = FALSE,
id = rand_id("impute_mode")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}
\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}
\item{role}{Not used by this step since no new variables are
created.}
\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}
\item{modes}{A named character vector of modes. This is
\code{NULL} until computed by \code{\link[=prep]{prep()}}.}
\item{ptype}{A data frame prototype to cast new data sets to. This is
commonly a 0-row slice of the training set.}
\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}
\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_impute_mode} creates a \emph{specification} of a
recipe step that will substitute missing values of nominal
variables by the training set mode of those variables.
}
\details{
\code{step_impute_mode} estimates the variable modes
from the data used in the \code{training} argument of
\code{prep.recipe}. \code{bake.recipe} then applies the new
values to new data sets using these values. If the training set
data has more than one mode, one is selected at random.
As of \code{recipes} 0.1.16, this function name changed from \code{step_modeimpute()}
to \code{step_impute_mode()}.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with columns
\code{terms} (the selectors or variables selected) and \code{model} (the mode
value) is returned.
}
\section{Case weights}{
This step performs an unsupervised operation that can utilize case weights.
As a result, case weights are only used with frequency weights. For more
information, see the documentation in \link{case_weights} and the examples on
\code{tidymodels.org}.
}
\examples{
\dontshow{if (rlang::is_installed("modeldata")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
data("credit_data", package = "modeldata")
## missing data per column
vapply(credit_data, function(x) mean(is.na(x)), c(num = 0))
set.seed(342)
in_training <- sample(1:nrow(credit_data), 2000)
credit_tr <- credit_data[in_training, ]
credit_te <- credit_data[-in_training, ]
missing_examples <- c(14, 394, 565)
rec <- recipe(Price ~ ., data = credit_tr)
impute_rec <- rec \%>\%
step_impute_mode(Status, Home, Marital)
imp_models <- prep(impute_rec, training = credit_tr)
imputed_te <- bake(imp_models, new_data = credit_te, everything())
table(credit_te$Home, imputed_te$Home, useNA = "always")
tidy(impute_rec, number = 1)
tidy(imp_models, number = 1)
\dontshow{\}) # examplesIf}
}
\seealso{
Other imputation steps:
\code{\link{step_impute_bag}()},
\code{\link{step_impute_knn}()},
\code{\link{step_impute_linear}()},
\code{\link{step_impute_lower}()},
\code{\link{step_impute_mean}()},
\code{\link{step_impute_median}()},
\code{\link{step_impute_roll}()}
}
\concept{imputation steps}
|