File: step_intercept.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (89 lines) | stat: -rw-r--r-- 2,887 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/intercept.R
\name{step_intercept}
\alias{step_intercept}
\title{Add intercept (or constant) column}
\usage{
step_intercept(
  recipe,
  ...,
  role = "predictor",
  trained = FALSE,
  name = "intercept",
  value = 1L,
  skip = FALSE,
  id = rand_id("intercept")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{Argument ignored; included for consistency with other step
specification functions.}

\item{role}{For model terms created by this step, what analysis role should
they be assigned? By default, the new columns created by this step from
the original variables will be used as \emph{predictors} in a model.}

\item{trained}{A logical to indicate if the quantities for preprocessing
have been estimated. Again included only for consistency.}

\item{name}{Character name for newly added column}

\item{value}{A numeric constant to fill the intercept column. Defaults to
\code{1L}.}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}

\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_intercept} creates a \emph{specification} of a recipe step that
will add an intercept or constant term in the first column of a data
matrix. \code{step_intercept} has defaults to \emph{predictor} role so
that it is by default called in the bake step. Be careful to avoid
unintentional transformations when calling steps with
\code{all_predictors}.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with column
\code{terms} (the columns that will be affected) is returned.
}

\section{Case weights}{


The underlying operation does not allow for case weights.
}

\examples{
\dontshow{if (rlang::is_installed("modeldata")) (if (getRversion() >= "3.4") withAutoprint else force)(\{ # examplesIf}
data(biomass, package = "modeldata")

biomass_tr <- biomass[biomass$dataset == "Training", ]
biomass_te <- biomass[biomass$dataset == "Testing", ]

rec <- recipe(
  HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
  data = biomass_tr
)
rec_trans <- recipe(HHV ~ ., data = biomass_tr[, -(1:2)]) \%>\%
  step_intercept(value = 2) \%>\%
  step_scale(carbon)

rec_obj <- prep(rec_trans, training = biomass_tr)

with_intercept <- bake(rec_obj, biomass_te)
with_intercept
\dontshow{\}) # examplesIf}
}