1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/logit.R
\name{step_logit}
\alias{step_logit}
\title{Logit Transformation}
\usage{
step_logit(
recipe,
...,
offset = 0,
role = NA,
trained = FALSE,
columns = NULL,
skip = FALSE,
id = rand_id("logit")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}
\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}
\item{offset}{A numeric value to modify values of the columns that are either
one or zero. They are modified to be \code{x - offset} or \code{offset}, respectively.}
\item{role}{Not used by this step since no new variables are
created.}
\item{trained}{A logical to indicate if the quantities for
preprocessing have been estimated.}
\item{columns}{A character string of variable names that will
be populated (eventually) by the \code{terms} argument.}
\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = TRUE} as it may affect
the computations for subsequent operations.}
\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_logit} creates a \emph{specification} of a recipe
step that will logit transform the data.
}
\details{
The logit transformation takes values between
zero and one and translates them to be on the real line using
the function \code{f(p) = log(p/(1-p))}.
}
\section{Tidying}{
When you \code{\link[=tidy.recipe]{tidy()}} this step, a tibble with columns
\code{terms} (the columns that will be affected) is returned.
}
\section{Case weights}{
The underlying operation does not allow for case weights.
}
\examples{
set.seed(313)
examples <- matrix(runif(40), ncol = 2)
examples <- data.frame(examples)
rec <- recipe(~ X1 + X2, data = examples)
logit_trans <- rec \%>\%
step_logit(all_numeric_predictors())
logit_obj <- prep(logit_trans, training = examples)
transformed_te <- bake(logit_obj, examples)
plot(examples$X1, transformed_te$X1)
tidy(logit_trans, number = 1)
tidy(logit_obj, number = 1)
}
\seealso{
Other individual transformation steps:
\code{\link{step_BoxCox}()},
\code{\link{step_YeoJohnson}()},
\code{\link{step_bs}()},
\code{\link{step_harmonic}()},
\code{\link{step_hyperbolic}()},
\code{\link{step_inverse}()},
\code{\link{step_invlogit}()},
\code{\link{step_log}()},
\code{\link{step_mutate}()},
\code{\link{step_ns}()},
\code{\link{step_percentile}()},
\code{\link{step_poly}()},
\code{\link{step_relu}()},
\code{\link{step_sqrt}()}
}
\concept{individual transformation steps}
|