1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/naomit.R
\name{step_naomit}
\alias{step_naomit}
\title{Remove observations with missing values}
\usage{
step_naomit(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
skip = TRUE,
id = rand_id("naomit")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}
\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}
\item{role}{Unused, include for consistency with other steps.}
\item{trained}{A logical to indicate if the quantities for preprocessing
have been estimated. Again included for consistency.}
\item{columns}{A character string of variable names that will
be populated (eventually) by the \code{terms} argument.}
\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = FALSE}.}
\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_naomit} creates a \emph{specification} of a recipe step that
will remove observations (rows of data) if they contain \code{NA}
or \code{NaN} values.
}
\section{Row Filtering}{
This step can entirely remove observations (rows of data), which can have
unintended and/or problematic consequences when applying the step to new
data later via \code{\link[=bake]{bake()}}. Consider whether \code{skip = TRUE} or
\code{skip = FALSE} is more appropriate in any given use case. In most instances
that affect the rows of the data being predicted, this step probably should
not be applied at all; instead, execute operations like this outside and
before starting a preprocessing \code{\link[=recipe]{recipe()}}.
}
\section{Case weights}{
The underlying operation does not allow for case weights.
}
\examples{
recipe(Ozone ~ ., data = airquality) \%>\%
step_naomit(Solar.R) \%>\%
prep(airquality, verbose = FALSE) \%>\%
bake(new_data = NULL)
}
\seealso{
Other row operation steps:
\code{\link{step_arrange}()},
\code{\link{step_filter}()},
\code{\link{step_impute_roll}()},
\code{\link{step_lag}()},
\code{\link{step_sample}()},
\code{\link{step_shuffle}()},
\code{\link{step_slice}()}
}
\concept{row operation steps}
|