File: step_naomit.Rd

package info (click to toggle)
r-cran-recipes 1.0.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 3,636 kB
  • sloc: sh: 37; makefile: 2
file content (84 lines) | stat: -rw-r--r-- 2,646 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/naomit.R
\name{step_naomit}
\alias{step_naomit}
\title{Remove observations with missing values}
\usage{
step_naomit(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  columns = NULL,
  skip = TRUE,
  id = rand_id("naomit")
)
}
\arguments{
\item{recipe}{A recipe object. The step will be added to the
sequence of operations for this recipe.}

\item{...}{One or more selector functions to choose variables
for this step. See \code{\link[=selections]{selections()}} for more details.}

\item{role}{Unused, include for consistency with other steps.}

\item{trained}{A logical to indicate if the quantities for preprocessing
have been estimated. Again included for consistency.}

\item{columns}{A character string of variable names that will
be populated (eventually) by the \code{terms} argument.}

\item{skip}{A logical. Should the step be skipped when the
recipe is baked by \code{\link[=bake]{bake()}}? While all operations are baked
when \code{\link[=prep]{prep()}} is run, some operations may not be able to be
conducted on new data (e.g. processing the outcome variable(s)).
Care should be taken when using \code{skip = FALSE}.}

\item{id}{A character string that is unique to this step to identify it.}
}
\value{
An updated version of \code{recipe} with the new step added to the
sequence of any existing operations.
}
\description{
\code{step_naomit} creates a \emph{specification} of a recipe step that
will remove observations (rows of data) if they contain \code{NA}
or \code{NaN} values.
}
\section{Row Filtering}{


This step can entirely remove observations (rows of data), which can have
unintended and/or problematic consequences when applying the step to new
data later via \code{\link[=bake]{bake()}}. Consider whether \code{skip = TRUE} or
\code{skip = FALSE} is more appropriate in any given use case. In most instances
that affect the rows of the data being predicted, this step probably should
not be applied at all; instead, execute operations like this outside and
before starting a preprocessing \code{\link[=recipe]{recipe()}}.
}

\section{Case weights}{


The underlying operation does not allow for case weights.
}

\examples{

recipe(Ozone ~ ., data = airquality) \%>\%
  step_naomit(Solar.R) \%>\%
  prep(airquality, verbose = FALSE) \%>\%
  bake(new_data = NULL)
}
\seealso{
Other row operation steps: 
\code{\link{step_arrange}()},
\code{\link{step_filter}()},
\code{\link{step_impute_roll}()},
\code{\link{step_lag}()},
\code{\link{step_sample}()},
\code{\link{step_shuffle}()},
\code{\link{step_slice}()}
}
\concept{row operation steps}